Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 31085 by abdo imad last updated on 02/Mar/18

calculate ∫∫_(x^2  +y^2  −2x≤0) xdxdy.

$${calculate}\:\int\int_{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:−\mathrm{2}{x}\leqslant\mathrm{0}} {xdxdy}. \\ $$

Commented by abdo imad last updated on 11/Mar/18

let use the olar coordinates  x=rcosθ and y=rsinθ  x^2  +y^2  −2x ≤0 ⇔ r^2  −2rcosθ≤0 ⇔ 0<r≤2coθ due to  diffeomorphisme  ((−π)/2)≤θ≤(π/2) ⇒  I=∫∫_(−(π/2)≤θ≤(π/2) and 0<r≤2cosθ) rcosθ rdrdθ  =∫_(−(π/2)) ^(π/2) ( ∫_0 ^(2cosθ)  r^2 dr)cosθ dθ but  ∫_0 ^(2cosθ)  r^2 dr=[(1/3)r^3 ]_0 ^(2cosθ) =(8/3) cos^3 θ ⇒  I= (8/3) ∫_(−(π/2)) ^(π/2)  cos^4 dθ =((16)/3) ∫_0 ^(π/2)  (((1+cos(2θ))^2 )/4)dθ  =(4/3)∫_0 ^(π/2)  (1+2cos(2θ)+((1+cos(4θ))/2))dθ  =(4/3)(π/2) +(8/3)∫_0 ^(π/2) cos(2θ)dθ  +(2/3) (π/2) +(2/3) ∫_0 ^(π/2) cos(4θ)dθ  =((2π)/3) +0 +(π/3) +0 =π ⇒ I=π.

$${let}\:{use}\:{the}\:{olar}\:{coordinates}\:\:{x}={rcos}\theta\:{and}\:{y}={rsin}\theta \\ $$$${x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:−\mathrm{2}{x}\:\leqslant\mathrm{0}\:\Leftrightarrow\:{r}^{\mathrm{2}} \:−\mathrm{2}{rcos}\theta\leqslant\mathrm{0}\:\Leftrightarrow\:\mathrm{0}<{r}\leqslant\mathrm{2}{co}\theta\:{due}\:{to} \\ $$$${diffeomorphisme}\:\:\frac{−\pi}{\mathrm{2}}\leqslant\theta\leqslant\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$$${I}=\int\int_{−\frac{\pi}{\mathrm{2}}\leqslant\theta\leqslant\frac{\pi}{\mathrm{2}}\:{and}\:\mathrm{0}<{r}\leqslant\mathrm{2}{cos}\theta} {rcos}\theta\:{rdrd}\theta \\ $$$$=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left(\:\int_{\mathrm{0}} ^{\mathrm{2}{cos}\theta} \:{r}^{\mathrm{2}} {dr}\right){cos}\theta\:{d}\theta\:{but} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}{cos}\theta} \:{r}^{\mathrm{2}} {dr}=\left[\frac{\mathrm{1}}{\mathrm{3}}{r}^{\mathrm{3}} \right]_{\mathrm{0}} ^{\mathrm{2}{cos}\theta} =\frac{\mathrm{8}}{\mathrm{3}}\:{cos}^{\mathrm{3}} \theta\:\Rightarrow \\ $$$${I}=\:\frac{\mathrm{8}}{\mathrm{3}}\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{4}} {d}\theta\:=\frac{\mathrm{16}}{\mathrm{3}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\left(\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)\right)^{\mathrm{2}} }{\mathrm{4}}{d}\theta \\ $$$$=\frac{\mathrm{4}}{\mathrm{3}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left(\mathrm{1}+\mathrm{2}{cos}\left(\mathrm{2}\theta\right)+\frac{\mathrm{1}+{cos}\left(\mathrm{4}\theta\right)}{\mathrm{2}}\right){d}\theta \\ $$$$=\frac{\mathrm{4}}{\mathrm{3}}\frac{\pi}{\mathrm{2}}\:+\frac{\mathrm{8}}{\mathrm{3}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}\left(\mathrm{2}\theta\right){d}\theta\:\:+\frac{\mathrm{2}}{\mathrm{3}}\:\frac{\pi}{\mathrm{2}}\:+\frac{\mathrm{2}}{\mathrm{3}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}\left(\mathrm{4}\theta\right){d}\theta \\ $$$$=\frac{\mathrm{2}\pi}{\mathrm{3}}\:+\mathrm{0}\:+\frac{\pi}{\mathrm{3}}\:+\mathrm{0}\:=\pi\:\Rightarrow\:{I}=\pi. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com