All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 31102 by abdo imad last updated on 02/Mar/18
find∫0+∞lnxx2+a2dx2)findthevalueof∫0∞lnx(x2+a2)3.
Commented by abdo imad last updated on 05/Mar/18
letputf(a)=∫0∞lnxx2+a2dxch.x=atwitha>0givef(a)=∫0∞lna+lnta2(1+t2)dt=lnaa2∫0∞dt1+t2+1a2∫0∞lnt1+t2dtbutwehaveprovedthat∫0∞lnt1+t2dt=0⇒f(a)=πlna2a22)wehavef′(a)=−2a∫0∞lnx(x2+a2)2dx⇒∫0∞lnx(x2+a2)2=−12af′(a)=−πlna4a3.
dda(−f′(a)2a)=∫0∞−22a(x2+a2)(x2+a2)4lnxdx=−4a∫0∞lnx(x2+a2)3dx⇒∫0∞lnx(x2+a2)3dx=−14a∂∂a(−πlna4a3)=π16a(lnaa3)′=π16a(a2−3a2lnaa6)=πa2(1−3lna)16a7=π(1−3lna)16a4.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com