Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 31102 by abdo imad last updated on 02/Mar/18

find ∫_0 ^(+∞)    ((lnx)/(x^2  +a^2 ))dx  2) find the value of ∫_0 ^∞   ((lnx)/((x^2  +a^2 )^3 )) .

$${find}\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{lnx}}{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnx}}{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{3}} }\:. \\ $$

Commented by abdo imad last updated on 05/Mar/18

let put f(a)= ∫_0 ^∞   ((lnx)/(x^2  +a^2 ))dx  ch.x=at  with a>0 give  f(a)=∫_0 ^∞  ((lna +lnt)/(a^2 (1+t^2 )))dt=((lna)/a^2 )∫_0 ^∞  (dt/(1+t^2 )) +(1/a^2 )∫_0 ^∞  ((lnt)/(1+t^2 ))dt but  we have proved that ∫_0 ^∞  ((lnt)/(1+t^2 ))dt=0 ⇒  f(a)= ((πlna)/(2a^2 ))  2) we have f^′ (a)=−2a∫_0 ^∞  ((lnx)/((x^2  +a^2 )^2 ))dx ⇒  ∫_0 ^∞   ((lnx)/((x^(2 )  +a^2 )^2 ))=((−1)/(2a))f^′ (a)= ((−πlna)/(4a^3 )) .

$${let}\:{put}\:{f}\left({a}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnx}}{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx}\:\:{ch}.{x}={at}\:\:{with}\:{a}>\mathrm{0}\:{give} \\ $$$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{lna}\:+{lnt}}{{a}^{\mathrm{2}} \left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{dt}=\frac{{lna}}{{a}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} \:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} \:\frac{{lnt}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:{but} \\ $$$${we}\:{have}\:{proved}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{lnt}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}=\mathrm{0}\:\Rightarrow \\ $$$${f}\left({a}\right)=\:\frac{\pi{lna}}{\mathrm{2}{a}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{we}\:{have}\:{f}^{'} \left({a}\right)=−\mathrm{2}{a}\int_{\mathrm{0}} ^{\infty} \:\frac{{lnx}}{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnx}}{\left({x}^{\mathrm{2}\:} \:+{a}^{\mathrm{2}} \right)^{\mathrm{2}} }=\frac{−\mathrm{1}}{\mathrm{2}{a}}{f}^{'} \left({a}\right)=\:\frac{−\pi{lna}}{\mathrm{4}{a}^{\mathrm{3}} }\:. \\ $$

Commented by abdo imad last updated on 05/Mar/18

(d/da)(((−f^′ (a))/(2a)))= ∫_0 ^∞  ((−2 2a(x^2  +a^2 ))/((x^2  +a^2 )^4 ))lnxdx=−4a ∫_0 ^∞   ((lnx)/((x^2  +a^2 )^3 ))dx  ⇒∫_0 ^∞   ((lnx)/((x^2  +a^2 )^3 ))dx=((−1)/(4a))(∂/∂a)( ((−πlna)/(4a^3 )))  =(π/(16a))(((lna)/a^3 ))^′ =(π/(16a))( ((a^2  −3a^2 lna)/a^6 ))=((πa^2 (1−3lna))/(16 a^7 ))  =((π(1−3lna))/(16 a^4 )) .

$$\frac{{d}}{{da}}\left(\frac{−{f}^{'} \left({a}\right)}{\mathrm{2}{a}}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\frac{−\mathrm{2}\:\mathrm{2}{a}\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{4}} }{lnxdx}=−\mathrm{4}{a}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnx}}{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{3}} }{dx} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnx}}{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{3}} }{dx}=\frac{−\mathrm{1}}{\mathrm{4}{a}}\frac{\partial}{\partial{a}}\left(\:\frac{−\pi{lna}}{\mathrm{4}{a}^{\mathrm{3}} }\right) \\ $$$$=\frac{\pi}{\mathrm{16}{a}}\left(\frac{{lna}}{{a}^{\mathrm{3}} }\right)^{'} =\frac{\pi}{\mathrm{16}{a}}\left(\:\frac{{a}^{\mathrm{2}} \:−\mathrm{3}{a}^{\mathrm{2}} {lna}}{{a}^{\mathrm{6}} }\right)=\frac{\pi{a}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{3}{lna}\right)}{\mathrm{16}\:{a}^{\mathrm{7}} } \\ $$$$=\frac{\pi\left(\mathrm{1}−\mathrm{3}{lna}\right)}{\mathrm{16}\:{a}^{\mathrm{4}} }\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com