Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 31102 by abdo imad last updated on 02/Mar/18

find ∫_0 ^(+∞)    ((lnx)/(x^2  +a^2 ))dx  2) find the value of ∫_0 ^∞   ((lnx)/((x^2  +a^2 )^3 )) .

find0+lnxx2+a2dx2)findthevalueof0lnx(x2+a2)3.

Commented by abdo imad last updated on 05/Mar/18

let put f(a)= ∫_0 ^∞   ((lnx)/(x^2  +a^2 ))dx  ch.x=at  with a>0 give  f(a)=∫_0 ^∞  ((lna +lnt)/(a^2 (1+t^2 )))dt=((lna)/a^2 )∫_0 ^∞  (dt/(1+t^2 )) +(1/a^2 )∫_0 ^∞  ((lnt)/(1+t^2 ))dt but  we have proved that ∫_0 ^∞  ((lnt)/(1+t^2 ))dt=0 ⇒  f(a)= ((πlna)/(2a^2 ))  2) we have f^′ (a)=−2a∫_0 ^∞  ((lnx)/((x^2  +a^2 )^2 ))dx ⇒  ∫_0 ^∞   ((lnx)/((x^(2 )  +a^2 )^2 ))=((−1)/(2a))f^′ (a)= ((−πlna)/(4a^3 )) .

letputf(a)=0lnxx2+a2dxch.x=atwitha>0givef(a)=0lna+lnta2(1+t2)dt=lnaa20dt1+t2+1a20lnt1+t2dtbutwehaveprovedthat0lnt1+t2dt=0f(a)=πlna2a22)wehavef(a)=2a0lnx(x2+a2)2dx0lnx(x2+a2)2=12af(a)=πlna4a3.

Commented by abdo imad last updated on 05/Mar/18

(d/da)(((−f^′ (a))/(2a)))= ∫_0 ^∞  ((−2 2a(x^2  +a^2 ))/((x^2  +a^2 )^4 ))lnxdx=−4a ∫_0 ^∞   ((lnx)/((x^2  +a^2 )^3 ))dx  ⇒∫_0 ^∞   ((lnx)/((x^2  +a^2 )^3 ))dx=((−1)/(4a))(∂/∂a)( ((−πlna)/(4a^3 )))  =(π/(16a))(((lna)/a^3 ))^′ =(π/(16a))( ((a^2  −3a^2 lna)/a^6 ))=((πa^2 (1−3lna))/(16 a^7 ))  =((π(1−3lna))/(16 a^4 )) .

dda(f(a)2a)=022a(x2+a2)(x2+a2)4lnxdx=4a0lnx(x2+a2)3dx0lnx(x2+a2)3dx=14aa(πlna4a3)=π16a(lnaa3)=π16a(a23a2lnaa6)=πa2(13lna)16a7=π(13lna)16a4.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com