Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 3112 by Filup last updated on 05/Dec/15

let S={a_1 , a_2 , ..., a_n } : ∣S∣=n    S contains n random integers such that  a≤a_k ≤b    If I wanted to find the average value  which is:     S^� =(1/n)Σ_(i=1) ^n a_i   What would a possible answer be?    If we must use an example,  lets say S contains ten random integers,  all are within 1≤a_k ≤10.  What would the possible average be?

$$\mathrm{let}\:{S}=\left\{{a}_{\mathrm{1}} ,\:{a}_{\mathrm{2}} ,\:...,\:{a}_{{n}} \right\}\::\:\mid{S}\mid={n} \\ $$$$ \\ $$$${S}\:\mathrm{contains}\:{n}\:\mathrm{random}\:\mathrm{integers}\:\mathrm{such}\:\mathrm{that} \\ $$$${a}\leqslant{a}_{{k}} \leqslant{b} \\ $$$$ \\ $$$$\mathrm{If}\:\mathrm{I}\:\mathrm{wanted}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{average}\:\mathrm{value} \\ $$$$\mathrm{which}\:\mathrm{is}:\:\:\:\:\:\bar {{S}}=\frac{\mathrm{1}}{{n}}\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{i}} \\ $$$$\mathrm{What}\:\mathrm{would}\:\mathrm{a}\:\mathrm{possible}\:\mathrm{answer}\:\mathrm{be}? \\ $$$$ \\ $$$$\mathrm{If}\:\mathrm{we}\:\mathrm{must}\:\mathrm{use}\:\mathrm{an}\:\mathrm{example}, \\ $$$$\mathrm{lets}\:\mathrm{say}\:{S}\:\mathrm{contains}\:\mathrm{ten}\:\mathrm{random}\:\mathrm{integers}, \\ $$$$\mathrm{all}\:\mathrm{are}\:\mathrm{within}\:\mathrm{1}\leqslant{a}_{{k}} \leqslant\mathrm{10}. \\ $$$$\mathrm{What}\:\mathrm{would}\:\mathrm{the}\:\mathrm{possible}\:\mathrm{average}\:\mathrm{be}? \\ $$

Commented by prakash jain last updated on 05/Dec/15

Same integer can be selected twice? or is  the experiment with replacement?

$$\mathrm{Same}\:\mathrm{integer}\:\mathrm{can}\:\mathrm{be}\:\mathrm{selected}\:\mathrm{twice}?\:\mathrm{or}\:\mathrm{is} \\ $$$$\mathrm{the}\:\mathrm{experiment}\:\mathrm{with}\:\mathrm{replacement}? \\ $$

Commented by Filup last updated on 05/Dec/15

An integer can be used multiple times    e.g. S={1, 1, 2, 2, 2, ...}

$$\mathrm{An}\:\mathrm{integer}\:\mathrm{can}\:\mathrm{be}\:\mathrm{used}\:\mathrm{multiple}\:\mathrm{times} \\ $$$$ \\ $$$$\mathrm{e}.\mathrm{g}.\:{S}=\left\{\mathrm{1},\:\mathrm{1},\:\mathrm{2},\:\mathrm{2},\:\mathrm{2},\:...\right\} \\ $$

Commented by Filup last updated on 05/Dec/15

This way you can choose 100 integer numbers  which are in value between 1 and 3,  for example.

$$\mathrm{This}\:\mathrm{way}\:\mathrm{you}\:\mathrm{can}\:\mathrm{choose}\:\mathrm{100}\:\mathrm{integer}\:\mathrm{numbers} \\ $$$$\mathrm{which}\:\mathrm{are}\:\mathrm{in}\:\mathrm{value}\:\mathrm{between}\:\mathrm{1}\:\mathrm{and}\:\mathrm{3}, \\ $$$$\mathrm{for}\:\mathrm{example}. \\ $$

Commented by Filup last updated on 05/Dec/15

Because the set is random within its  bounds, i would assume the average  was a probabalistic average. Meaning,  the average is also somewhat random

$$\mathrm{Because}\:\mathrm{the}\:\mathrm{set}\:\mathrm{is}\:\mathrm{random}\:\mathrm{within}\:\mathrm{its} \\ $$$$\mathrm{bounds},\:\mathrm{i}\:\mathrm{would}\:\mathrm{assume}\:\mathrm{the}\:\mathrm{average} \\ $$$$\mathrm{was}\:\mathrm{a}\:\mathrm{probabalistic}\:\mathrm{average}.\:\mathrm{Meaning}, \\ $$$$\mathrm{the}\:\mathrm{average}\:\mathrm{is}\:\mathrm{also}\:\mathrm{somewhat}\:\mathrm{random} \\ $$

Commented by Filup last updated on 05/Dec/15

∣S∣=n  S={a_1 , ..., a_n }  a≤a_k ≤b    a_k =(1/(b−a)) chance of a specific value within  a≤a_k ≤b  a, b ∈Z,  b≥a

$$\mid{S}\mid={n} \\ $$$${S}=\left\{{a}_{\mathrm{1}} ,\:...,\:{a}_{{n}} \right\} \\ $$$${a}\leqslant{a}_{{k}} \leqslant{b} \\ $$$$ \\ $$$${a}_{{k}} =\frac{\mathrm{1}}{{b}−{a}}\:\mathrm{chance}\:\mathrm{of}\:\mathrm{a}\:\mathrm{specific}\:\mathrm{value}\:\mathrm{within} \\ $$$${a}\leqslant{a}_{{k}} \leqslant{b} \\ $$$${a},\:{b}\:\in\mathbb{Z},\:\:{b}\geqslant{a} \\ $$

Commented by prakash jain last updated on 05/Dec/15

Distribution will be multinomial. Average  can be calculated based on expected value.

$$\mathrm{Distribution}\:\mathrm{will}\:\mathrm{be}\:\mathrm{multinomial}.\:\mathrm{Average} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{calculated}\:\mathrm{based}\:\mathrm{on}\:\mathrm{expected}\:\mathrm{value}. \\ $$

Answered by Filup last updated on 05/Dec/15

S={a_1 , ..., a_n },  a≤a_i ≤b,  a_i ,a,b∈Z,   b>a  ∣S∣=n,  n∈Z    let a_n =b−k_n ,   0≤k≤a, k_n ∈Z  =random integer in range [a, b] for rnd k_n     S^� =(1/n)Σ_(i=1) ^n a_i   =((a_1 +...+a_n )/n)  =(((b−k_1 )+(b−k_2 )+...+(b−k_n ))/n)  =(1/n)Σ_(i=1) ^n (b−k_i )  =(1/n)bn−(1/n)Σ_(i=1) ^n k_i   =b−(1/n)Σ_(i=1) ^n k_i     S^�  = b−(1/n)Σ_(i=1) ^n k_i   where k_i =random integer  0≤k_i ≤a    Note:  this isnt a very good proof. it is practically  the same as what is in the question.  it is difficult to do maths with randomness

$${S}=\left\{{a}_{\mathrm{1}} ,\:...,\:{a}_{{n}} \right\},\:\:{a}\leqslant{a}_{{i}} \leqslant{b},\:\:{a}_{{i}} ,{a},{b}\in\mathbb{Z},\:\:\:{b}>{a} \\ $$$$\mid{S}\mid={n},\:\:{n}\in\mathbb{Z} \\ $$$$ \\ $$$$\mathrm{let}\:{a}_{{n}} ={b}−{k}_{{n}} ,\:\:\:\mathrm{0}\leqslant{k}\leqslant{a},\:{k}_{{n}} \in\mathbb{Z} \\ $$$$={random}\:\mathrm{integer}\:\mathrm{in}\:\mathrm{range}\:\left[{a},\:{b}\right]\:\mathrm{for}\:\mathrm{rnd}\:{k}_{{n}} \\ $$$$ \\ $$$$\bar {{S}}=\frac{\mathrm{1}}{{n}}\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{i}} \\ $$$$=\frac{{a}_{\mathrm{1}} +...+{a}_{{n}} }{{n}} \\ $$$$=\frac{\left({b}−{k}_{\mathrm{1}} \right)+\left({b}−{k}_{\mathrm{2}} \right)+...+\left({b}−{k}_{{n}} \right)}{{n}} \\ $$$$=\frac{\mathrm{1}}{{n}}\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left({b}−{k}_{{i}} \right) \\ $$$$=\frac{\mathrm{1}}{{n}}{bn}−\frac{\mathrm{1}}{{n}}\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{k}_{{i}} \\ $$$$={b}−\frac{\mathrm{1}}{{n}}\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{k}_{{i}} \\ $$$$ \\ $$$$\bar {{S}}\:=\:{b}−\frac{\mathrm{1}}{{n}}\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{k}_{{i}} \\ $$$$\mathrm{where}\:{k}_{{i}} ={random}\:{integer}\:\:\mathrm{0}\leqslant{k}_{{i}} \leqslant{a} \\ $$$$ \\ $$$$\mathrm{Note}: \\ $$$$\mathrm{this}\:\mathrm{isnt}\:\mathrm{a}\:\mathrm{very}\:\mathrm{good}\:\mathrm{proof}.\:\mathrm{it}\:\mathrm{is}\:\mathrm{practically} \\ $$$$\mathrm{the}\:\mathrm{same}\:\mathrm{as}\:\mathrm{what}\:\mathrm{is}\:\mathrm{in}\:\mathrm{the}\:\mathrm{question}. \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{difficult}\:\mathrm{to}\:\mathrm{do}\:\mathrm{maths}\:\mathrm{with}\:{randomness} \\ $$

Answered by prakash jain last updated on 05/Dec/15

Total number of integers=b−a+1  Probability of selecting any one value=(1/(b−a+1))  Expected number of times a given  integer was selected after n trials=(n/(b−a+1))  Expectation is that a will be selcted (n/(b−a+1)) times.  Same applies for a+1 to b.  Expected sum =(n/(b−a+1))Σ_(i=a) ^b i  Σ_(i=a) ^b i=((b−a+1)/2)(2a+(b−a+1−1)×1)=((b−a+1)/2)×(b+a)  Expected Sum=(n/((b−a+1)))×(((b−a+1)(b+a))/2)=((n(b+a))/2)    Expected average=(((n(b+a))/2)/n)=(((b+a))/2)

$$\mathrm{Total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{integers}={b}−{a}+\mathrm{1} \\ $$$$\mathrm{Probability}\:\mathrm{of}\:\mathrm{selecting}\:\mathrm{any}\:\mathrm{one}\:\mathrm{value}=\frac{\mathrm{1}}{{b}−{a}+\mathrm{1}} \\ $$$$\mathrm{Expected}\:\mathrm{number}\:\mathrm{of}\:\mathrm{times}\:\mathrm{a}\:\mathrm{given} \\ $$$$\mathrm{integer}\:\mathrm{was}\:\mathrm{selected}\:\mathrm{after}\:{n}\:\mathrm{trials}=\frac{{n}}{{b}−{a}+\mathrm{1}} \\ $$$$\mathrm{Expectation}\:\mathrm{is}\:\mathrm{that}\:{a}\:\mathrm{will}\:\mathrm{be}\:\mathrm{selcted}\:\frac{{n}}{{b}−{a}+\mathrm{1}}\:\mathrm{times}. \\ $$$$\mathrm{Same}\:\mathrm{applies}\:\mathrm{for}\:{a}+\mathrm{1}\:\mathrm{to}\:{b}. \\ $$$$\mathrm{Expected}\:\mathrm{sum}\:=\frac{{n}}{{b}−{a}+\mathrm{1}}\underset{{i}={a}} {\overset{{b}} {\sum}}{i} \\ $$$$\underset{{i}={a}} {\overset{{b}} {\sum}}{i}=\frac{{b}−{a}+\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{a}+\left({b}−{a}+\mathrm{1}−\mathrm{1}\right)×\mathrm{1}\right)=\frac{{b}−{a}+\mathrm{1}}{\mathrm{2}}×\left({b}+{a}\right) \\ $$$$\mathrm{Expected}\:\mathrm{Sum}=\frac{{n}}{\left({b}−{a}+\mathrm{1}\right)}×\frac{\left({b}−{a}+\mathrm{1}\right)\left({b}+{a}\right)}{\mathrm{2}}=\frac{{n}\left({b}+{a}\right)}{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Expected}\:\mathrm{average}=\frac{\frac{{n}\left({b}+{a}\right)}{\mathrm{2}}}{{n}}=\frac{\left({b}+{a}\right)}{\mathrm{2}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com