Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 3113 by Yozzi last updated on 05/Dec/15

Define, for sets A and B,                  A∗B=(A−B)∪(B−A).  Show that A∗B=(A∪B)−(A∩B).  Prove that A∗(B∗C)=(A∗B)∗C.

$${Define},\:{for}\:{sets}\:{A}\:{and}\:{B}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{A}\ast{B}=\left({A}−{B}\right)\cup\left({B}−{A}\right). \\ $$$${Show}\:{that}\:{A}\ast{B}=\left({A}\cup{B}\right)−\left({A}\cap{B}\right). \\ $$$${Prove}\:{that}\:{A}\ast\left({B}\ast{C}\right)=\left({A}\ast{B}\right)\ast{C}.\: \\ $$

Commented by Yozzi last updated on 06/Dec/15

It is proof of the associativity of the  operation ∗ which is giving me   trouble. My current mental approach   includes a consideration of a   general Venn diagram for 3 sets,  after making an unsucessful algebraic attempt.  (Hopefully I′ll determine an   algebraic solution,soon...)

$${It}\:{is}\:{proof}\:{of}\:{the}\:{associativity}\:{of}\:{the} \\ $$$${operation}\:\ast\:{which}\:{is}\:{giving}\:{me}\: \\ $$$${trouble}.\:{My}\:{current}\:{mental}\:{approach}\: \\ $$$${includes}\:{a}\:{consideration}\:{of}\:{a}\: \\ $$$${general}\:{Venn}\:{diagram}\:{for}\:\mathrm{3}\:{sets}, \\ $$$${after}\:{making}\:{an}\:{unsucessful}\:{algebraic}\:{attempt}. \\ $$$$\left({Hopefully}\:{I}'{ll}\:{determine}\:{an}\:\right. \\ $$$$\left.{algebraic}\:{solution},{soon}...\right) \\ $$

Commented by prakash jain last updated on 06/Dec/15

added an algebraic proof by simplifying  both sides.

$${added}\:{an}\:{algebraic}\:{proof}\:{by}\:{simplifying} \\ $$$${both}\:{sides}. \\ $$

Commented by Yozzi last updated on 06/Dec/15

Is it possible to use only one side  without looking at simplifying  the next? This method gave me  problems.

$${Is}\:{it}\:{possible}\:{to}\:{use}\:{only}\:{one}\:{side} \\ $$$${without}\:{looking}\:{at}\:{simplifying} \\ $$$${the}\:{next}?\:{This}\:{method}\:{gave}\:{me} \\ $$$${problems}.\: \\ $$

Commented by prakash jain last updated on 06/Dec/15

Given the proof start at the last step of  LHS and do RHS steps in reverse order!

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{proof}\:\mathrm{start}\:\mathrm{at}\:\mathrm{the}\:\mathrm{last}\:\mathrm{step}\:\mathrm{of} \\ $$$$\mathrm{LHS}\:\mathrm{and}\:\mathrm{do}\:\mathrm{RHS}\:\mathrm{steps}\:\mathrm{in}\:\mathrm{reverse}\:\mathrm{order}! \\ $$

Answered by prakash jain last updated on 05/Dec/15

A−B=A∩B′  B−A=B∩A′  (A−B)∪(B−A)=(A∩B′)∪(B∩A′)  =(A∪(B∩A′))∩(B′∪(B∩A′))  =((A∪B)∩(A∪A′))∩((B′∪B)∩(B′∪A′))      A∪A′=U universal set      (A∪B)∩(A∪A′)=A∪B       (B′∪B)∩(B′∪A′)=B′∪A′  =(A∪B)∩(B′∪A′)=(A∪B)∩(A∩B)′  =(A∪B)−(A∩B)

$$\mathrm{A}−\mathrm{B}=\mathrm{A}\cap\mathrm{B}' \\ $$$$\mathrm{B}−\mathrm{A}=\mathrm{B}\cap\mathrm{A}' \\ $$$$\left(\mathrm{A}−\mathrm{B}\right)\cup\left(\mathrm{B}−\mathrm{A}\right)=\left(\mathrm{A}\cap\mathrm{B}'\right)\cup\left(\mathrm{B}\cap\mathrm{A}'\right) \\ $$$$=\left(\mathrm{A}\cup\left(\mathrm{B}\cap\mathrm{A}'\right)\right)\cap\left(\mathrm{B}'\cup\left(\mathrm{B}\cap\mathrm{A}'\right)\right) \\ $$$$=\left(\left(\mathrm{A}\cup\mathrm{B}\right)\cap\left(\mathrm{A}\cup\mathrm{A}'\right)\right)\cap\left(\left(\mathrm{B}'\cup\mathrm{B}\right)\cap\left(\mathrm{B}'\cup\mathrm{A}'\right)\right) \\ $$$$\:\:\:\:\mathrm{A}\cup\mathrm{A}'=\mathrm{U}\:\mathrm{universal}\:\mathrm{set} \\ $$$$\:\:\:\:\left(\mathrm{A}\cup\mathrm{B}\right)\cap\left(\mathrm{A}\cup\mathrm{A}'\right)=\mathrm{A}\cup\mathrm{B} \\ $$$$\:\:\:\:\:\left(\mathrm{B}'\cup\mathrm{B}\right)\cap\left(\mathrm{B}'\cup\mathrm{A}'\right)=\mathrm{B}'\cup\mathrm{A}' \\ $$$$=\left(\mathrm{A}\cup\mathrm{B}\right)\cap\left(\mathrm{B}'\cup\mathrm{A}'\right)=\left(\mathrm{A}\cup\mathrm{B}\right)\cap\left(\mathrm{A}\cap\mathrm{B}\right)' \\ $$$$=\left(\mathrm{A}\cup\mathrm{B}\right)−\left(\mathrm{A}\cap\mathrm{B}\right) \\ $$

Commented by Rasheed Soomro last updated on 06/Dec/15

          G^(OO^(V) ) D    !

$$\:\:\:\:\:\:\:\:\:\:\mathcal{G}^{\overset{\mathcal{V}} {\mathcal{OO}}} \mathcal{D}\:\:\:\:! \\ $$

Answered by prakash jain last updated on 06/Dec/15

RHS=(A∗B)∗C  =((A∩B′)∪(A′∩B))∗C  =(((A∩B′)∪(A′∩B))∩C′)∪(((A∩B′)∪(A′∩B))′∩C)          (A∩B′)∪(A′∩B)=(A∪B)∩(A∩B)′ see proof in prev ans  =((A∩B′∩C′)∪(A′∩B∩C′))∪(((A∪B)∩(A∩B)′)′∩C)  =((A∩B′∩C′)∪(A′∩B∩C′))∪(((A∪B)′∪(A∩B))∩C)  =((A∩B′∩C′)∪(A′∩B∩C′))∪(((A′∩B′)∪(A∩B))∩C)  =((A∩B′∩C′)∪(A′∩B∩C′))∪((A′∩B′∩C)∪(A∩B∩C))  =(A∩B′∩C′)∪(A′∩B∩C′)∪(A′∩B′∩C)∪(A∩B∩C)  LHS=A∗(B∗C)  =(A∩((B∩C′)∪(B′∩C))′)∪(A′∩((B∩C′)∪(B′∩C)))          (B∩C′)∪(B′∩C)=(B∪C)∩(B∩C)′ see proof in prev ans  =(A∩((B∪C)∩(B∩C)′)′)∪((A′∩B∩C′)∪(A′∩B′∩C))  =(A∩((B∪C)′∪(B∩C)))∪((A′∩B∩C′)∪(A′∩B′∩C))  =(A∩((B′∩C′)∪(B∩C)))∪((A′∩B∩C′)∪(A′∩B′∩C))  =(A∩B′∩C′)∪(A∩B∩C)∪(A′∩B∩C′)∪(A′∩B′∩C)  LHS=RHS

$$\mathrm{RHS}=\left(\mathrm{A}\ast\mathrm{B}\right)\ast\mathrm{C} \\ $$$$=\left(\left(\mathrm{A}\cap\mathrm{B}'\right)\cup\left(\mathrm{A}'\cap\mathrm{B}\right)\right)\ast\mathrm{C} \\ $$$$=\left(\left(\left(\mathrm{A}\cap\mathrm{B}'\right)\cup\left(\mathrm{A}'\cap\mathrm{B}\right)\right)\cap\mathrm{C}'\right)\cup\left(\left(\left(\mathrm{A}\cap\mathrm{B}'\right)\cup\left(\mathrm{A}'\cap\mathrm{B}\right)\right)'\cap\mathrm{C}\right) \\ $$$$\:\:\:\:\:\:\:\:\left(\mathrm{A}\cap\mathrm{B}'\right)\cup\left(\mathrm{A}'\cap\mathrm{B}\right)=\left(\mathrm{A}\cup\mathrm{B}\right)\cap\left(\mathrm{A}\cap\mathrm{B}\right)'\:\mathrm{see}\:\mathrm{proof}\:\mathrm{in}\:\mathrm{prev}\:\mathrm{ans} \\ $$$$=\left(\left(\mathrm{A}\cap\mathrm{B}'\cap\mathrm{C}'\right)\cup\left(\mathrm{A}'\cap\mathrm{B}\cap\mathrm{C}'\right)\right)\cup\left(\left(\left(\mathrm{A}\cup\mathrm{B}\right)\cap\left(\mathrm{A}\cap\mathrm{B}\right)'\right)'\cap\mathrm{C}\right) \\ $$$$=\left(\left(\mathrm{A}\cap\mathrm{B}'\cap\mathrm{C}'\right)\cup\left(\mathrm{A}'\cap\mathrm{B}\cap\mathrm{C}'\right)\right)\cup\left(\left(\left(\mathrm{A}\cup\mathrm{B}\right)'\cup\left(\mathrm{A}\cap\mathrm{B}\right)\right)\cap\mathrm{C}\right) \\ $$$$=\left(\left(\mathrm{A}\cap\mathrm{B}'\cap\mathrm{C}'\right)\cup\left(\mathrm{A}'\cap\mathrm{B}\cap\mathrm{C}'\right)\right)\cup\left(\left(\left(\mathrm{A}'\cap\mathrm{B}'\right)\cup\left(\mathrm{A}\cap\mathrm{B}\right)\right)\cap\mathrm{C}\right) \\ $$$$=\left(\left(\mathrm{A}\cap\mathrm{B}'\cap\mathrm{C}'\right)\cup\left(\mathrm{A}'\cap\mathrm{B}\cap\mathrm{C}'\right)\right)\cup\left(\left(\mathrm{A}'\cap\mathrm{B}'\cap\mathrm{C}\right)\cup\left(\mathrm{A}\cap\mathrm{B}\cap\mathrm{C}\right)\right) \\ $$$$=\left(\mathrm{A}\cap\mathrm{B}'\cap\mathrm{C}'\right)\cup\left(\mathrm{A}'\cap\mathrm{B}\cap\mathrm{C}'\right)\cup\left(\mathrm{A}'\cap\mathrm{B}'\cap\mathrm{C}\right)\cup\left(\mathrm{A}\cap\mathrm{B}\cap\mathrm{C}\right) \\ $$$$\mathrm{LHS}=\mathrm{A}\ast\left(\mathrm{B}\ast\mathrm{C}\right) \\ $$$$=\left(\mathrm{A}\cap\left(\left(\mathrm{B}\cap\mathrm{C}'\right)\cup\left(\mathrm{B}'\cap\mathrm{C}\right)\right)'\right)\cup\left(\mathrm{A}'\cap\left(\left(\mathrm{B}\cap\mathrm{C}'\right)\cup\left(\mathrm{B}'\cap\mathrm{C}\right)\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\left(\mathrm{B}\cap\mathrm{C}'\right)\cup\left(\mathrm{B}'\cap\mathrm{C}\right)=\left(\mathrm{B}\cup\mathrm{C}\right)\cap\left(\mathrm{B}\cap\mathrm{C}\right)'\:\mathrm{see}\:\mathrm{proof}\:\mathrm{in}\:\mathrm{prev}\:\mathrm{ans} \\ $$$$=\left(\mathrm{A}\cap\left(\left(\mathrm{B}\cup\mathrm{C}\right)\cap\left(\mathrm{B}\cap\mathrm{C}\right)'\right)'\right)\cup\left(\left(\mathrm{A}'\cap\mathrm{B}\cap\mathrm{C}'\right)\cup\left(\mathrm{A}'\cap\mathrm{B}'\cap\mathrm{C}\right)\right) \\ $$$$=\left(\mathrm{A}\cap\left(\left(\mathrm{B}\cup\mathrm{C}\right)'\cup\left(\mathrm{B}\cap\mathrm{C}\right)\right)\right)\cup\left(\left(\mathrm{A}'\cap\mathrm{B}\cap\mathrm{C}'\right)\cup\left(\mathrm{A}'\cap\mathrm{B}'\cap\mathrm{C}\right)\right) \\ $$$$=\left(\mathrm{A}\cap\left(\left(\mathrm{B}'\cap\mathrm{C}'\right)\cup\left(\mathrm{B}\cap\mathrm{C}\right)\right)\right)\cup\left(\left(\mathrm{A}'\cap\mathrm{B}\cap\mathrm{C}'\right)\cup\left(\mathrm{A}'\cap\mathrm{B}'\cap\mathrm{C}\right)\right) \\ $$$$=\left(\mathrm{A}\cap\mathrm{B}'\cap\mathrm{C}'\right)\cup\left(\mathrm{A}\cap\mathrm{B}\cap\mathrm{C}\right)\cup\left(\mathrm{A}'\cap\mathrm{B}\cap\mathrm{C}'\right)\cup\left(\mathrm{A}'\cap\mathrm{B}'\cap\mathrm{C}\right) \\ $$$$\mathrm{LHS}=\mathrm{RHS} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com