Question and Answers Forum

All Questions      Topic List

Atomic Structure Questions

Previous in All Question      Next in All Question      

Previous in Atomic Structure      Next in Atomic Structure      

Question Number 31193 by Tinkutara last updated on 03/Mar/18

Answered by ajfour last updated on 03/Mar/18

E_n =−(e^2 /(4πε_0 (2r)))+m_e v^2   ((m_e v^2 )/r)=(e^2 /(4πε_0 (2r)^2 ))  ⇒  m_e v^2 =(1/2)((e^2 /(4πε_0 (2r))))    ...(i)  ⇒  E_n =−(1/2)×(e^2 /(4πε_0 (2r)))  m_e vr=((nh)/(2π))  ⇒  m_e ^2 v^2 r^2 =((n^2 h^2 )/(4π^2 ))   ..(ii)  (ii)÷(i)  gives    m_e r^2 = ((n^2 h^2 )/(4π^2 ))(((16πε_0 r)/e^2 ))  or     r=((4n^2 h^2 ε_0 )/(πm_e e^2 ))  ⇒   E_n =−(e^2 /(16πε_0 ))(((πm_e e^2 )/(4n^2 h^2 ε_0 )))  △E = ((hc)/λ) = ((m_e e^4 )/(64ε_0 ^2 h^2 ))((1/n^2 )−(1/m^2 ))  ⇒  (1/λ)= ((m_e e^4 )/(64ε_0 ^2 ch^3 ))((1/n^2 )−(1/m^2 ))  Hence R_p =((me^4 )/(64𝛆_0 ^2 ch^3 ))  For hydrogen  R_H =((me^4 )/(8ε_0 ^2 ch^3 ))  ⇒   R_p = (R_H /8)  .

$${E}_{{n}} =−\frac{{e}^{\mathrm{2}} }{\mathrm{4}\pi\epsilon_{\mathrm{0}} \left(\mathrm{2}{r}\right)}+{m}_{{e}} {v}^{\mathrm{2}} \\ $$$$\frac{{m}_{{e}} {v}^{\mathrm{2}} }{{r}}=\frac{{e}^{\mathrm{2}} }{\mathrm{4}\pi\epsilon_{\mathrm{0}} \left(\mathrm{2}{r}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:{m}_{{e}} {v}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{e}^{\mathrm{2}} }{\mathrm{4}\pi\epsilon_{\mathrm{0}} \left(\mathrm{2}{r}\right)}\right)\:\:\:\:...\left({i}\right) \\ $$$$\Rightarrow\:\:{E}_{{n}} =−\frac{\mathrm{1}}{\mathrm{2}}×\frac{{e}^{\mathrm{2}} }{\mathrm{4}\pi\epsilon_{\mathrm{0}} \left(\mathrm{2}{r}\right)} \\ $$$${m}_{{e}} {vr}=\frac{{nh}}{\mathrm{2}\pi}\:\:\Rightarrow\:\:{m}_{{e}} ^{\mathrm{2}} {v}^{\mathrm{2}} {r}^{\mathrm{2}} =\frac{{n}^{\mathrm{2}} {h}^{\mathrm{2}} }{\mathrm{4}\pi^{\mathrm{2}} }\:\:\:..\left({ii}\right) \\ $$$$\left({ii}\right)\boldsymbol{\div}\left({i}\right)\:\:{gives} \\ $$$$\:\:{m}_{{e}} {r}^{\mathrm{2}} =\:\frac{{n}^{\mathrm{2}} {h}^{\mathrm{2}} }{\mathrm{4}\pi^{\mathrm{2}} }\left(\frac{\mathrm{16}\pi\epsilon_{\mathrm{0}} {r}}{{e}^{\mathrm{2}} }\right) \\ $$$${or}\:\:\:\:\:{r}=\frac{\mathrm{4}{n}^{\mathrm{2}} {h}^{\mathrm{2}} \epsilon_{\mathrm{0}} }{\pi{m}_{{e}} {e}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\:{E}_{{n}} =−\frac{{e}^{\mathrm{2}} }{\mathrm{16}\pi\epsilon_{\mathrm{0}} }\left(\frac{\pi{m}_{{e}} {e}^{\mathrm{2}} }{\mathrm{4}{n}^{\mathrm{2}} {h}^{\mathrm{2}} \epsilon_{\mathrm{0}} }\right) \\ $$$$\bigtriangleup{E}\:=\:\frac{{hc}}{\lambda}\:=\:\frac{{m}_{{e}} {e}^{\mathrm{4}} }{\mathrm{64}\epsilon_{\mathrm{0}} ^{\mathrm{2}} {h}^{\mathrm{2}} }\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }−\frac{\mathrm{1}}{{m}^{\mathrm{2}} }\right) \\ $$$$\Rightarrow\:\:\frac{\mathrm{1}}{\lambda}=\:\frac{{m}_{{e}} {e}^{\mathrm{4}} }{\mathrm{64}\epsilon_{\mathrm{0}} ^{\mathrm{2}} {ch}^{\mathrm{3}} }\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }−\frac{\mathrm{1}}{{m}^{\mathrm{2}} }\right) \\ $$$${Hence}\:{R}_{{p}} =\frac{\boldsymbol{{me}}^{\mathrm{4}} }{\mathrm{64}\boldsymbol{\epsilon}_{\mathrm{0}} ^{\mathrm{2}} \boldsymbol{{ch}}^{\mathrm{3}} } \\ $$$${For}\:{hydrogen}\:\:{R}_{{H}} =\frac{{me}^{\mathrm{4}} }{\mathrm{8}\epsilon_{\mathrm{0}} ^{\mathrm{2}} {ch}^{\mathrm{3}} } \\ $$$$\Rightarrow\:\:\:{R}_{{p}} =\:\frac{{R}_{{H}} }{\mathrm{8}}\:\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com