Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 31382 by Tinkutara last updated on 07/Mar/18

Answered by mrW2 last updated on 07/Mar/18

Commented by mrW2 last updated on 07/Mar/18

x_A =s  y_A =0  v_(Ax) =(ds/dt)=v_A   tan θ=(h/s)  (1/(cos^2  θ))×(dθ/dt)=−((hv_A )/s^2 )  ⇒ω=(dθ/dt)=−((hv_A  cos^2  θ)/s^2 )=−((hv_A )/(s^2 +h^2 ))    x_B =x_A −l cos θ  y_B =l sin θ  v_(Bx) =(dx_B /dt)=v_A +l sin θ (dθ/dt)=v_A [1−((lh^2 )/((s^2 +h^2 )^(3/2) ))]  v_(By) =(dy_B /dt)=l cos θ (dθ/dt)=−((lhv_A s)/((s^2 +h^2 )^(3/2) ))  at s=h:  v_(Bx) =v_A [1−(l/(2(√2)h))]  v_(By) =−((lv_A )/(2(√2)h))  v_B =(v_A /(2(√2)h))(√(l^2 +(2(√2)h−l)^2 ))=(v_A /(2h))(√(l^2 +4h^2 −2(√2)hl))  ω=−(v_A /(2h))

$${x}_{{A}} ={s} \\ $$$${y}_{{A}} =\mathrm{0} \\ $$$${v}_{{Ax}} =\frac{{ds}}{{dt}}={v}_{{A}} \\ $$$$\mathrm{tan}\:\theta=\frac{{h}}{{s}} \\ $$$$\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \:\theta}×\frac{{d}\theta}{{dt}}=−\frac{{hv}_{{A}} }{{s}^{\mathrm{2}} } \\ $$$$\Rightarrow\omega=\frac{{d}\theta}{{dt}}=−\frac{{hv}_{{A}} \:\mathrm{cos}^{\mathrm{2}} \:\theta}{{s}^{\mathrm{2}} }=−\frac{{hv}_{{A}} }{{s}^{\mathrm{2}} +{h}^{\mathrm{2}} } \\ $$$$ \\ $$$${x}_{{B}} ={x}_{{A}} −{l}\:\mathrm{cos}\:\theta \\ $$$${y}_{{B}} ={l}\:\mathrm{sin}\:\theta \\ $$$${v}_{{Bx}} =\frac{{dx}_{{B}} }{{dt}}={v}_{{A}} +{l}\:\mathrm{sin}\:\theta\:\frac{{d}\theta}{{dt}}={v}_{{A}} \left[\mathrm{1}−\frac{{lh}^{\mathrm{2}} }{\left({s}^{\mathrm{2}} +{h}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\right] \\ $$$${v}_{{By}} =\frac{{dy}_{{B}} }{{dt}}={l}\:\mathrm{cos}\:\theta\:\frac{{d}\theta}{{dt}}=−\frac{{lhv}_{{A}} {s}}{\left({s}^{\mathrm{2}} +{h}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$${at}\:{s}={h}: \\ $$$${v}_{{Bx}} ={v}_{{A}} \left[\mathrm{1}−\frac{{l}}{\mathrm{2}\sqrt{\mathrm{2}}{h}}\right] \\ $$$${v}_{{By}} =−\frac{{lv}_{{A}} }{\mathrm{2}\sqrt{\mathrm{2}}{h}} \\ $$$${v}_{{B}} =\frac{{v}_{{A}} }{\mathrm{2}\sqrt{\mathrm{2}}{h}}\sqrt{{l}^{\mathrm{2}} +\left(\mathrm{2}\sqrt{\mathrm{2}}{h}−{l}\right)^{\mathrm{2}} }=\frac{{v}_{{A}} }{\mathrm{2}{h}}\sqrt{{l}^{\mathrm{2}} +\mathrm{4}{h}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{2}}{hl}} \\ $$$$\omega=−\frac{{v}_{{A}} }{\mathrm{2}{h}} \\ $$

Commented by Tinkutara last updated on 08/Mar/18

This method is a bit lengthy. Can it be done by ICOR (instantaneous center of rotation)?

Commented by mrW2 last updated on 08/Mar/18

certainly. but the method shown is  general. the easier way is:  ω=((v_A /(√2))/((√2) h))=(v_A /(2h))  v_(B′) =(l−(√2)h)(v_A /(2h))  v_(B′′) =(((√2)v_A )/2)  ⇒v_B =(√(v_(B′) ^2 +v_(B′′) ^2 ))=(v_A /(2h))(√(4h^2 +l^2 −2(√2)lh))

$${certainly}.\:{but}\:{the}\:{method}\:{shown}\:{is} \\ $$$${general}.\:{the}\:{easier}\:{way}\:{is}: \\ $$$$\omega=\frac{\frac{{v}_{{A}} }{\sqrt{\mathrm{2}}}}{\sqrt{\mathrm{2}}\:{h}}=\frac{{v}_{{A}} }{\mathrm{2}{h}} \\ $$$${v}_{{B}'} =\left({l}−\sqrt{\mathrm{2}}{h}\right)\frac{{v}_{{A}} }{\mathrm{2}{h}} \\ $$$${v}_{{B}''} =\frac{\sqrt{\mathrm{2}}{v}_{{A}} }{\mathrm{2}} \\ $$$$\Rightarrow{v}_{{B}} =\sqrt{{v}_{{B}'} ^{\mathrm{2}} +{v}_{{B}''} ^{\mathrm{2}} }=\frac{{v}_{{A}} }{\mathrm{2}{h}}\sqrt{\mathrm{4}{h}^{\mathrm{2}} +{l}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{2}}{lh}} \\ $$

Commented by Tinkutara last updated on 08/Mar/18

Thanks for the solution ��������

Terms of Service

Privacy Policy

Contact: info@tinkutara.com