Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 31422 by abdo imad last updated on 08/Mar/18

find Σ_(n=1) ^∞  arctan((2/(16n^2  +8n−2))).

$${find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{arctan}\left(\frac{\mathrm{2}}{\mathrm{16}{n}^{\mathrm{2}} \:+\mathrm{8}{n}−\mathrm{2}}\right). \\ $$

Commented by rahul 19 last updated on 08/Mar/18

can u plz provide sol. for this one .

$${can}\:{u}\:{plz}\:{provide}\:{sol}.\:{for}\:{this}\:{one}\:. \\ $$

Commented by prof Abdo imad last updated on 08/Mar/18

you can use  u_n  =4n+3 and v_n =4n−1 .

$${you}\:{can}\:{use}\:\:{u}_{{n}} \:=\mathrm{4}{n}+\mathrm{3}\:{and}\:{v}_{{n}} =\mathrm{4}{n}−\mathrm{1}\:. \\ $$

Commented by rahul 19 last updated on 08/Mar/18

but for this in question numerator  should be 4 : !.

$${but}\:{for}\:{this}\:{in}\:{question}\:{numerator} \\ $$$${should}\:{be}\:\mathrm{4}\::\:!. \\ $$

Commented by abdo imad last updated on 08/Mar/18

the Q.is find Σ_(n=1) ^∞  arctan( (4/(16n^2  +8n −2)))

$${the}\:{Q}.{is}\:{find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{arctan}\left(\:\frac{\mathrm{4}}{\mathrm{16}{n}^{\mathrm{2}} \:+\mathrm{8}{n}\:−\mathrm{2}}\right) \\ $$

Commented by rahul 19 last updated on 09/Mar/18

yes sir! now its clear and cut.

$${yes}\:{sir}!\:{now}\:{its}\:{clear}\:{and}\:{cut}. \\ $$

Commented by abdo imad last updated on 09/Mar/18

let put S_N =Σ_(n=1) ^N  arctan(  (4/(16n^2  +8n −2)))let introduce  u_n =4n+3 we have u_(n−1) =4(n−1)+3=4n−1 and  ((u_n  −u_(n−1) )/(1+u_n .u_(n−1) ))= (4/(1+(4n+3)(4n−1)))= (4/(1+16n^2  −4n +12n−3))  = (4/(16n^2  +8n −2))  then let use the ch.u_n =tan(v_n )⇒  v_n =arctan(u_n )⇒ S_N =Σ_(n=1) ^N  arctan(((tan(v_n )−tan(v_(n−1) ))/(1+tan(v_n )tan(v_(n−1) ))))  =Σ_(n=1) ^N  arctan(tan(v_n −v_(n−1) )=Σ_(n=1) ^N v_n  −v_(n−1)   =v_N  −v_0 =artan(4N+3)−artan(3)⇒  lim_(N→∞)  S_N =(π/2)  −artan(3) .

$${let}\:{put}\:{S}_{{N}} =\sum_{{n}=\mathrm{1}} ^{{N}} \:{arctan}\left(\:\:\frac{\mathrm{4}}{\mathrm{16}{n}^{\mathrm{2}} \:+\mathrm{8}{n}\:−\mathrm{2}}\right){let}\:{introduce} \\ $$$${u}_{{n}} =\mathrm{4}{n}+\mathrm{3}\:{we}\:{have}\:{u}_{{n}−\mathrm{1}} =\mathrm{4}\left({n}−\mathrm{1}\right)+\mathrm{3}=\mathrm{4}{n}−\mathrm{1}\:{and} \\ $$$$\frac{{u}_{{n}} \:−{u}_{{n}−\mathrm{1}} }{\mathrm{1}+{u}_{{n}} .{u}_{{n}−\mathrm{1}} }=\:\frac{\mathrm{4}}{\mathrm{1}+\left(\mathrm{4}{n}+\mathrm{3}\right)\left(\mathrm{4}{n}−\mathrm{1}\right)}=\:\frac{\mathrm{4}}{\mathrm{1}+\mathrm{16}{n}^{\mathrm{2}} \:−\mathrm{4}{n}\:+\mathrm{12}{n}−\mathrm{3}} \\ $$$$=\:\frac{\mathrm{4}}{\mathrm{16}{n}^{\mathrm{2}} \:+\mathrm{8}{n}\:−\mathrm{2}}\:\:{then}\:{let}\:{use}\:{the}\:{ch}.{u}_{{n}} ={tan}\left({v}_{{n}} \right)\Rightarrow \\ $$$${v}_{{n}} ={arctan}\left({u}_{{n}} \right)\Rightarrow\:{S}_{{N}} =\sum_{{n}=\mathrm{1}} ^{{N}} \:{arctan}\left(\frac{{tan}\left({v}_{{n}} \right)−{tan}\left({v}_{{n}−\mathrm{1}} \right)}{\mathrm{1}+{tan}\left({v}_{{n}} \right){tan}\left({v}_{{n}−\mathrm{1}} \right)}\right) \\ $$$$=\sum_{{n}=\mathrm{1}} ^{{N}} \:{arctan}\left({tan}\left({v}_{{n}} −{v}_{{n}−\mathrm{1}} \right)=\sum_{{n}=\mathrm{1}} ^{{N}} {v}_{{n}} \:−{v}_{{n}−\mathrm{1}} \right. \\ $$$$={v}_{{N}} \:−{v}_{\mathrm{0}} ={artan}\left(\mathrm{4}{N}+\mathrm{3}\right)−{artan}\left(\mathrm{3}\right)\Rightarrow \\ $$$${lim}_{{N}\rightarrow\infty} \:{S}_{{N}} =\frac{\pi}{\mathrm{2}}\:\:−{artan}\left(\mathrm{3}\right)\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com