Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 31496 by abdo imad last updated on 09/Mar/18

let a∈]0,π[   and A(x)= x^(2n)  −2cos(na)x^n  +1  1)factorize inside C[x] A(x)  2) factorize inside R[x] A(x).

$$\left.{let}\:{a}\in\right]\mathrm{0},\pi\left[\:\:\:{and}\:{A}\left({x}\right)=\:{x}^{\mathrm{2}{n}} \:−\mathrm{2}{cos}\left({na}\right){x}^{{n}} \:+\mathrm{1}\right. \\ $$$$\left.\mathrm{1}\right){factorize}\:{inside}\:{C}\left[{x}\right]\:{A}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{inside}\:{R}\left[{x}\right]\:{A}\left({x}\right). \\ $$

Commented by abdo imad last updated on 14/Mar/18

first let put x^n  =z  ⇔ x=^n (√z) ⇒ A(x)=z^2  −2cos(na)z +1  Δ^′  =cos^2 (na)−1=−sin^2 (na)=(isin(na))^2   z_1 = cos(na) +isin(na)=e^(ina)   and z_2 =e^(−ina)  ⇒  x=z^(1/n)  ⇒ x=e^(ia)  or  x=e^(−a)  ⇒  A(x)=(z−e^(ina) )(z−e^(−ina) )=(x^n  −e^(ina) )(x^n  −e^(−ina) )  A(x)=0  ⇔ x^n  = e^(ina)  or x^n =e^(−ina)  ⇔ (x e^(−ia) )^n =1x  or (x e^(ia) )^n =1 ⇔ x e^(−ia) =e^(i((2kπ)/n))   or   x e^(ia)  =e^(i((2kπ)/n))  ⇒  x=e^(i(((2kπ)/n)+a))  or x= e^(i(((2kπ)/n)−a))  so the roots of A(x) are  x_k =e^(i(((2kπ)/n)+a))   and t_k = e^(i(((2kπ)/n) −a))  and k∈[[0,n−1]].and  A(x)= Π_(k=0) ^(n−1)  (x −x_k )(x−t_k )  A(x)= Π_(k=0) ^(n−1) (x−e^(i(((2kπ)/n)+a)) ) Π_(k=0) ^(n−1)  (x −e^(i(((2kπ)/(n ))−a)) )  be continued...

$${first}\:{let}\:{put}\:{x}^{{n}} \:={z}\:\:\Leftrightarrow\:{x}=^{{n}} \sqrt{{z}}\:\Rightarrow\:{A}\left({x}\right)={z}^{\mathrm{2}} \:−\mathrm{2}{cos}\left({na}\right){z}\:+\mathrm{1} \\ $$$$\Delta^{'} \:={cos}^{\mathrm{2}} \left({na}\right)−\mathrm{1}=−{sin}^{\mathrm{2}} \left({na}\right)=\left({isin}\left({na}\right)\right)^{\mathrm{2}} \\ $$$${z}_{\mathrm{1}} =\:{cos}\left({na}\right)\:+{isin}\left({na}\right)={e}^{{ina}} \:\:{and}\:{z}_{\mathrm{2}} ={e}^{−{ina}} \:\Rightarrow \\ $$$${x}={z}^{\frac{\mathrm{1}}{{n}}} \:\Rightarrow\:{x}={e}^{{ia}} \:{or}\:\:{x}={e}^{−{a}} \:\Rightarrow \\ $$$${A}\left({x}\right)=\left({z}−{e}^{{ina}} \right)\left({z}−{e}^{−{ina}} \right)=\left({x}^{{n}} \:−{e}^{{ina}} \right)\left({x}^{{n}} \:−{e}^{−{ina}} \right) \\ $$$${A}\left({x}\right)=\mathrm{0}\:\:\Leftrightarrow\:{x}^{{n}} \:=\:{e}^{{ina}} \:{or}\:{x}^{{n}} ={e}^{−{ina}} \:\Leftrightarrow\:\left({x}\:{e}^{−{ia}} \right)^{{n}} =\mathrm{1}{x} \\ $$$${or}\:\left({x}\:{e}^{{ia}} \right)^{{n}} =\mathrm{1}\:\Leftrightarrow\:{x}\:{e}^{−{ia}} ={e}^{{i}\frac{\mathrm{2}{k}\pi}{{n}}} \:\:{or}\:\:\:{x}\:{e}^{{ia}} \:={e}^{{i}\frac{\mathrm{2}{k}\pi}{{n}}} \:\Rightarrow \\ $$$${x}={e}^{{i}\left(\frac{\mathrm{2}{k}\pi}{{n}}+{a}\right)} \:{or}\:{x}=\:{e}^{{i}\left(\frac{\mathrm{2}{k}\pi}{{n}}−{a}\right)} \:{so}\:{the}\:{roots}\:{of}\:{A}\left({x}\right)\:{are} \\ $$$${x}_{{k}} ={e}^{{i}\left(\frac{\mathrm{2}{k}\pi}{{n}}+{a}\right)} \:\:{and}\:{t}_{{k}} =\:{e}^{{i}\left(\frac{\mathrm{2}{k}\pi}{{n}}\:−{a}\right)} \:{and}\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right].{and} \\ $$$${A}\left({x}\right)=\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\left({x}\:−{x}_{{k}} \right)\left({x}−{t}_{{k}} \right) \\ $$$${A}\left({x}\right)=\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({x}−{e}^{{i}\left(\frac{\mathrm{2}{k}\pi}{{n}}+{a}\right)} \right)\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\left({x}\:−{e}^{{i}\left(\frac{\mathrm{2}{k}\pi}{{n}\:}−{a}\right)} \right)\:\:{be}\:{continued}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com