Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 31500 by abdo imad last updated on 09/Mar/18

let L_n (x)= e^x  (e^(−x)  x^n )^((n))    1) prove that L_n  is a polynomial  2) find degL_(n ) and the leading coefficient .

$${let}\:{L}_{{n}} \left({x}\right)=\:{e}^{{x}} \:\left({e}^{−{x}} \:{x}^{{n}} \right)^{\left({n}\right)} \: \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{L}_{{n}} \:{is}\:{a}\:{polynomial} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{degL}_{{n}\:} {and}\:{the}\:{leading}\:{coefficient}\:. \\ $$

Commented by abdo imad last updated on 13/Mar/18

we have by Leniz formulae   (e^(−x)  x^n )^((n))  =Σ_(k=0) ^n  C_n ^k   (x^n )^((k))  (e^(−x) )^((n−k))  but   (x^n )^((k)) =n(n−1)(n−2)...(n−k+1) x^(n−k)   =((n!)/((n−k)!)) x^(n−k)    and  (e^(−x) )^((n−k)) =(−1)^(n−k)  e^(−x)  ⇒  (e^(−x)  x^n )^((n))   = e^(−x) Σ_(k=0) ^n  (−1)^(n−k)  C_n ^k   ((n!)/((n−k)!)) x^(n−k)   ⇒  L_n (x)=(−1)^n  Σ_(k=0) ^n   (−1)^k  C_n ^k    ((n!)/((n−k)!)) x^(n−k)   ch.of indice  n−k=p give L_n (x)=(−1)^n  Σ_(p=0) ^n (−1)^(n−p)   C_n ^(n−p)  ((n!)/(p!)) x^p   L_n (x)= Σ_(p=0) ^n  (−1)^p   C_n ^p   ((n!)/(p!)) x^p   and is a polynomial  2) its clear that deg L_n =n and the leading coefficient is  (−1)^n  x^n  .

$${we}\:{have}\:{by}\:{Leniz}\:{formulae}\: \\ $$$$\left({e}^{−{x}} \:{x}^{{n}} \right)^{\left({n}\right)} \:=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\:\left({x}^{{n}} \right)^{\left({k}\right)} \:\left({e}^{−{x}} \right)^{\left({n}−{k}\right)} \:{but} \\ $$$$\:\left({x}^{{n}} \right)^{\left({k}\right)} ={n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)...\left({n}−{k}+\mathrm{1}\right)\:{x}^{{n}−{k}} \\ $$$$=\frac{{n}!}{\left({n}−{k}\right)!}\:{x}^{{n}−{k}} \:\:\:{and}\:\:\left({e}^{−{x}} \right)^{\left({n}−{k}\right)} =\left(−\mathrm{1}\right)^{{n}−{k}} \:{e}^{−{x}} \:\Rightarrow \\ $$$$\left({e}^{−{x}} \:{x}^{{n}} \right)^{\left({n}\right)} \:\:=\:{e}^{−{x}} \sum_{{k}=\mathrm{0}} ^{{n}} \:\left(−\mathrm{1}\right)^{{n}−{k}} \:{C}_{{n}} ^{{k}} \:\:\frac{{n}!}{\left({n}−{k}\right)!}\:{x}^{{n}−{k}} \:\:\Rightarrow \\ $$$${L}_{{n}} \left({x}\right)=\left(−\mathrm{1}\right)^{{n}} \:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\left(−\mathrm{1}\right)^{{k}} \:{C}_{{n}} ^{{k}} \:\:\:\frac{{n}!}{\left({n}−{k}\right)!}\:{x}^{{n}−{k}} \:\:{ch}.{of}\:{indice} \\ $$$${n}−{k}={p}\:{give}\:{L}_{{n}} \left({x}\right)=\left(−\mathrm{1}\right)^{{n}} \:\sum_{{p}=\mathrm{0}} ^{{n}} \left(−\mathrm{1}\right)^{{n}−{p}} \:\:{C}_{{n}} ^{{n}−{p}} \:\frac{{n}!}{{p}!}\:{x}^{{p}} \\ $$$${L}_{{n}} \left({x}\right)=\:\sum_{{p}=\mathrm{0}} ^{{n}} \:\left(−\mathrm{1}\right)^{{p}} \:\:{C}_{{n}} ^{{p}} \:\:\frac{{n}!}{{p}!}\:{x}^{{p}} \:\:{and}\:{is}\:{a}\:{polynomial} \\ $$$$\left.\mathrm{2}\right)\:{its}\:{clear}\:{that}\:{deg}\:{L}_{{n}} ={n}\:{and}\:{the}\:{leading}\:{coefficient}\:{is} \\ $$$$\left(−\mathrm{1}\right)^{{n}} \:{x}^{{n}} \:. \\ $$

Commented by abdo imad last updated on 13/Mar/18

Leibniz formulae...

$${Leibniz}\:{formulae}... \\ $$

Commented by abdo imad last updated on 13/Mar/18

L_n  are named polynomials of Laguerre.

$${L}_{{n}} \:{are}\:{named}\:{polynomials}\:{of}\:{Laguerre}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com