Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 31510 by abdo imad last updated on 09/Mar/18

find lim_(n→∞)   ^n (√(Π_(k=1) ^n (1+(k/n^2 ))))

$$\left.{find}\:{lim}_{{n}\rightarrow\infty} \:\:\:^{{n}} \sqrt{\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{1}+\frac{{k}}{{n}^{\mathrm{2}} }\right.}\right) \\ $$

Commented by abdo imad last updated on 12/Mar/18

let put A_n =(Π_(k=1) ^n (1+(k/n^2 )))^(1/n)  ⇒ ln(A_n )=(1/n)Σ_(k=1) ^n ln(1+(k/n^2 ))  ln(1+x)^′ = (1/(1+x))=Σ_(n=0)  (−1)^n x^n  ⇒ln(1+x) =Σ (−1)^n x^(n+1) /n+1  = Σ_(n=) ^∞  (−1)^(n−1)  (x^n /n)=x −(x^2 /2) +(x^3 /3) +... ⇒x−(x^2 /2) ≤ln(1+x)≤x  ⇒Σ_(k=1) ^n ((k/n^2 )) −(k^2 /(2n^4 ))≤ Σ_(k=1) ^n ln(1+(k/n^2 ))≤Σ_(k=1) ^n  (k/n^2 ) ⇒  ((n(n+1))/(2n^2 )) −(1/(2n^4 )) ((n(n+1)(2n+1))/6) ≤ Σ_(k=1) ^n  ln(1+(k/n^2 ))≤((n(n+1))/(2n^2 ))

$${let}\:{put}\:{A}_{{n}} =\left(\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{1}+\frac{{k}}{{n}^{\mathrm{2}} }\right)\right)^{\frac{\mathrm{1}}{{n}}} \:\Rightarrow\:{ln}\left({A}_{{n}} \right)=\frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{1}} ^{{n}} {ln}\left(\mathrm{1}+\frac{{k}}{{n}^{\mathrm{2}} }\right) \\ $$$${ln}\left(\mathrm{1}+{x}\right)^{'} =\:\frac{\mathrm{1}}{\mathrm{1}+{x}}=\sum_{{n}=\mathrm{0}} \:\left(−\mathrm{1}\right)^{{n}} {x}^{{n}} \:\Rightarrow{ln}\left(\mathrm{1}+{x}\right)\:=\Sigma\:\left(−\mathrm{1}\right)^{{n}} {x}^{{n}+\mathrm{1}} /{n}+\mathrm{1} \\ $$$$=\:\sum_{{n}=} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:\frac{{x}^{{n}} }{{n}}={x}\:−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:+\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\:+...\:\Rightarrow{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\leqslant{ln}\left(\mathrm{1}+{x}\right)\leqslant{x} \\ $$$$\Rightarrow\sum_{{k}=\mathrm{1}} ^{{n}} \left(\frac{{k}}{{n}^{\mathrm{2}} }\right)\:−\frac{{k}^{\mathrm{2}} }{\mathrm{2}{n}^{\mathrm{4}} }\leqslant\:\sum_{{k}=\mathrm{1}} ^{{n}} {ln}\left(\mathrm{1}+\frac{{k}}{{n}^{\mathrm{2}} }\right)\leqslant\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{{k}}{{n}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}{n}^{\mathrm{2}} }\:−\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{4}} }\:\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}}\:\leqslant\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{ln}\left(\mathrm{1}+\frac{{k}}{{n}^{\mathrm{2}} }\right)\leqslant\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}{n}^{\mathrm{2}} } \\ $$

Commented by abdo imad last updated on 12/Mar/18

α_n  ≤Σ_(k=1) ^n  ln(1+(k/n^2 ))≤β_n    ⇒(α_n /n) ≤(1/n)Σ_(k=1) ^n ln(1+(k/n^ ))≤(β_n /n)  (α_n /n) ∼ (1/(2n)) −(1/(6n^2 )) →0 and  (β_n /n) ∼ (1/(2n)) →0 ⇒lim_(n→) ln(A_n )=0  ⇒ lim_(n→∞)  A_n =1 .

$$\alpha_{{n}} \:\leqslant\sum_{{k}=\mathrm{1}} ^{{n}} \:{ln}\left(\mathrm{1}+\frac{{k}}{{n}^{\mathrm{2}} }\right)\leqslant\beta_{{n}} \:\:\:\Rightarrow\frac{\alpha_{{n}} }{{n}}\:\leqslant\frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{1}} ^{{n}} {ln}\left(\mathrm{1}+\frac{{k}}{{n}^{} }\right)\leqslant\frac{\beta_{{n}} }{{n}} \\ $$$$\frac{\alpha_{{n}} }{{n}}\:\sim\:\frac{\mathrm{1}}{\mathrm{2}{n}}\:−\frac{\mathrm{1}}{\mathrm{6}{n}^{\mathrm{2}} }\:\rightarrow\mathrm{0}\:{and}\:\:\frac{\beta_{{n}} }{{n}}\:\sim\:\frac{\mathrm{1}}{\mathrm{2}{n}}\:\rightarrow\mathrm{0}\:\Rightarrow{lim}_{{n}\rightarrow} {ln}\left({A}_{{n}} \right)=\mathrm{0} \\ $$$$\Rightarrow\:{lim}_{{n}\rightarrow\infty} \:{A}_{{n}} =\mathrm{1}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com