All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 31516 by abdo imad last updated on 09/Mar/18
find∫dxx+1+x2.
Commented by abdo imad last updated on 16/Mar/18
I=∫(1+x2−x)dx=∫1+x2dx−x22ch.x=shtgive∫1+x2dx=∫cht.chtdt=∫ch2tdt=∫1+ch(2t)2dt=t2+12∫ch(2t)dt=t2+14sh(2t)=t2+12sh(t)ch(t)=12argshx+12argsh(x)1+x2=12ln(x+1+x2)+1+x22ln(x+1+x2)⇒I=12(1+1+x2)ln(x+1+x2)−x22+λ
Answered by math1967 last updated on 18/Mar/18
∫x−1+x2x2−1−x2dx∫1+x2dx−∫xdxx1+x22+12log[x+1+x2]−x22+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com