Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 31528 by abdo imad last updated on 09/Mar/18

find lim_(x→2)   ((x^2   −2^x )/(arctanx −artan2)) .

findlimx2x22xarctanxartan2.

Commented by abdo imad last updated on 12/Mar/18

let put f(x)=2^x  =e^(xln2)  we have f^′ (x)=ln(2).2^x   f(x)=f(2) +((x−2)/(1!)) f^′ (2) + (((x−2)^2 )/(2!))ξ(x) with_(x→2)  ξ(x)→0  f(x)=4  +(x−2)ln2 .2^2  +(((x−2)^2 )/(2!)) ξ(x)⇒  x^2  −f(x)=x^2  −4  −ln(2)(x−2) 2^2  −(((x−2)^2 )/(2!)) ξ(x)  =(x−2)( x+2 −ln2 .2^2   −(1/(2!))ξ(x)) let put g(x)=arctanx  we have g(x)= g(2) +((x−2)/(1!))g^′ (2) +(((x−2)^2 )/(2!)) θ(x) with  θ(x)_(x→2) →0  we have g^′ (x)= (1/(1+x^2 )) ⇒g^′ (2)= (1/5) ⇒  g(x)=arctan2  +(1/5)((x−2)/(1!)) +(((x−2)^2 )/(2!)) θ(x)⇒  arctanx −arctan2= (x−2)( (1/5) +((x−2)/(2!)) θ(x)) ⇒  lim_(x→2)    ((x^2  −2^x )/(arctanx −arctan2))  =lim_(x→2)      ((x+2 −4ln2 −(1/2)ξ(x))/((1/5) +((x−2)/(2!))θ(x))) =5(4 −4 ln2) .

letputf(x)=2x=exln2wehavef(x)=ln(2).2xf(x)=f(2)+x21!f(2)+(x2)22!ξ(x)withx2ξ(x)0f(x)=4+(x2)ln2.22+(x2)22!ξ(x)x2f(x)=x24ln(2)(x2)22(x2)22!ξ(x)=(x2)(x+2ln2.2212!ξ(x))letputg(x)=arctanxwehaveg(x)=g(2)+x21!g(2)+(x2)22!θ(x)withθ(x)x20wehaveg(x)=11+x2g(2)=15g(x)=arctan2+15x21!+(x2)22!θ(x)arctanxarctan2=(x2)(15+x22!θ(x))limx2x22xarctanxarctan2=limx2x+24ln212ξ(x)15+x22!θ(x)=5(44ln2).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com