All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 31528 by abdo imad last updated on 09/Mar/18
findlimx→2x2−2xarctanx−artan2.
Commented by abdo imad last updated on 12/Mar/18
letputf(x)=2x=exln2wehavef′(x)=ln(2).2xf(x)=f(2)+x−21!f′(2)+(x−2)22!ξ(x)withx→2ξ(x)→0f(x)=4+(x−2)ln2.22+(x−2)22!ξ(x)⇒x2−f(x)=x2−4−ln(2)(x−2)22−(x−2)22!ξ(x)=(x−2)(x+2−ln2.22−12!ξ(x))letputg(x)=arctanxwehaveg(x)=g(2)+x−21!g′(2)+(x−2)22!θ(x)withθ(x)x→2→0wehaveg′(x)=11+x2⇒g′(2)=15⇒g(x)=arctan2+15x−21!+(x−2)22!θ(x)⇒arctanx−arctan2=(x−2)(15+x−22!θ(x))⇒limx→2x2−2xarctanx−arctan2=limx→2x+2−4ln2−12ξ(x)15+x−22!θ(x)=5(4−4ln2).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com