Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 31546 by prof Abdo imad last updated on 10/Mar/18

let consider the numrtical function  f(x)= (1/(x^2  +x+1))  calculate f^((n)) (x) then give  f^((n)) (0).

$${let}\:{consider}\:{the}\:{numrtical}\:{function} \\ $$$${f}\left({x}\right)=\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}\:\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{then}\:{give} \\ $$$${f}^{\left({n}\right)} \left(\mathrm{0}\right). \\ $$

Answered by prof Abdo imad last updated on 10/Apr/18

let decompose f(x) inside C(x)  roots of x^2  +x +1 =0  Δ=1−4=−3=(i(√3))^2  ⇒x_1 =((−1 +i(√3))/2) =j  x_2 =((−1−i(√3))/2) =j^−   so  f(x) = (1/((x−j)(x−j^− ))) = (a/(x−j))  +(b/(x−j^− ))  a= (1/(j−j^− )) = (1/(i(√3))) ,b = (1/(j^−  −j)) = (1/(−i(√3))) ⇒  f(x) = (1/(i(√3)))(  (1/(x−j)) − (1/(x−j^− ))) ⇒  f^((n)) (x)= (1/(i(√3)))(  ((1/(x−j)))^n  −((1/(x−j^− )))^n )  = (1/(i(√3)))(   (((−1)^n  n!)/((x−j)^(n+1) ))  −(((−1)^n n!)/((x−j^− )^(n+1) )))  = (((−1)^n n!)/(i(√3)))(   (1/((x−j)^(n+1) )) − (1/((x−j^− )^(n+1) ))) ⇒  f^((n)) (0) = (((−1)^n n!)/(i(√3))) (   (((−1)^(n+1) )/j^(n+1) ) −(((−1)^(n+1) )/j^−^(n+1)  ))  = ((−n!)/(i(√3)))(  ((−j^(n+1)  +j^(−n+1) )/1))= ((n!)/(i(√3)))( j^(n+1)  −j^−^(n+1)  )  =  ((n!)/(i(√3)))( 2i Im(j^(n+1) ) = ((2n!)/(√3))  Im(  e^(2i(n+1)(π/3)) ) ⇒  f^((n)) (0) = ((2(n!))/(√3)) sin(((2(n+1)π)/3)) .

$${let}\:{decompose}\:{f}\left({x}\right)\:{inside}\:{C}\left({x}\right) \\ $$$${roots}\:{of}\:{x}^{\mathrm{2}} \:+{x}\:+\mathrm{1}\:=\mathrm{0} \\ $$$$\Delta=\mathrm{1}−\mathrm{4}=−\mathrm{3}=\left({i}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \:\Rightarrow{x}_{\mathrm{1}} =\frac{−\mathrm{1}\:+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:={j} \\ $$$${x}_{\mathrm{2}} =\frac{−\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:=\overset{−} {{j}}\:\:{so} \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\left({x}−{j}\right)\left({x}−\overset{−} {{j}}\right)}\:=\:\frac{{a}}{{x}−{j}}\:\:+\frac{{b}}{{x}−\overset{−} {{j}}} \\ $$$${a}=\:\frac{\mathrm{1}}{{j}−\overset{−} {{j}}}\:=\:\frac{\mathrm{1}}{{i}\sqrt{\mathrm{3}}}\:,{b}\:=\:\frac{\mathrm{1}}{\overset{−} {{j}}\:−{j}}\:=\:\frac{\mathrm{1}}{−{i}\sqrt{\mathrm{3}}}\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{1}}{{i}\sqrt{\mathrm{3}}}\left(\:\:\frac{\mathrm{1}}{{x}−{j}}\:−\:\frac{\mathrm{1}}{{x}−\overset{−} {{j}}}\right)\:\Rightarrow \\ $$$${f}^{\left({n}\right)} \left({x}\right)=\:\frac{\mathrm{1}}{{i}\sqrt{\mathrm{3}}}\left(\:\:\left(\frac{\mathrm{1}}{{x}−{j}}\right)^{{n}} \:−\left(\frac{\mathrm{1}}{{x}−\overset{−} {{j}}}\right)^{{n}} \right) \\ $$$$=\:\frac{\mathrm{1}}{{i}\sqrt{\mathrm{3}}}\left(\:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{n}!}{\left({x}−{j}\right)^{{n}+\mathrm{1}} }\:\:−\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{\left({x}−\overset{−} {{j}}\right)^{{n}+\mathrm{1}} }\right) \\ $$$$=\:\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{{i}\sqrt{\mathrm{3}}}\left(\:\:\:\frac{\mathrm{1}}{\left({x}−{j}\right)^{{n}+\mathrm{1}} }\:−\:\frac{\mathrm{1}}{\left({x}−\overset{−} {{j}}\right)^{{n}+\mathrm{1}} }\right)\:\Rightarrow \\ $$$${f}^{\left({n}\right)} \left(\mathrm{0}\right)\:=\:\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{{i}\sqrt{\mathrm{3}}}\:\left(\:\:\:\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{j}^{{n}+\mathrm{1}} }\:−\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\overset{−^{{n}+\mathrm{1}} } {{j}}}\right) \\ $$$$=\:\frac{−{n}!}{{i}\sqrt{\mathrm{3}}}\left(\:\:\frac{−{j}^{{n}+\mathrm{1}} \:+\overset{−{n}+\mathrm{1}} {{j}}}{\mathrm{1}}\right)=\:\frac{{n}!}{{i}\sqrt{\mathrm{3}}}\left(\:{j}^{{n}+\mathrm{1}} \:−\overset{−^{{n}+\mathrm{1}} } {{j}}\right) \\ $$$$=\:\:\frac{{n}!}{{i}\sqrt{\mathrm{3}}}\left(\:\mathrm{2}{i}\:{Im}\left({j}^{{n}+\mathrm{1}} \right)\:=\:\frac{\mathrm{2}{n}!}{\sqrt{\mathrm{3}}}\:\:{Im}\left(\:\:{e}^{\mathrm{2}{i}\left({n}+\mathrm{1}\right)\frac{\pi}{\mathrm{3}}} \right)\:\Rightarrow\right. \\ $$$${f}^{\left({n}\right)} \left(\mathrm{0}\right)\:=\:\frac{\mathrm{2}\left({n}!\right)}{\sqrt{\mathrm{3}}}\:{sin}\left(\frac{\mathrm{2}\left({n}+\mathrm{1}\right)\pi}{\mathrm{3}}\right)\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com