Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 3160 by prakash jain last updated on 06/Dec/15

Prove that e=Σ_(n=0) ^∞ (1/(n!))  is irrational.

$$\mathrm{Prove}\:\mathrm{that}\:{e}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\:\:\mathrm{is}\:\mathrm{irrational}. \\ $$

Answered by Yozzi last updated on 06/Dec/15

Fourier′s Proof  Suppose for contradiction that  e is rational, so we have  e=(a/b), (a,b∈Z, b≠0).  Define x=b!(e−Σ_(n=0) ^b (1/(n!))) where x∈Z.  To check that x∈Z, substitute e=(a/b).  x=b!((a/b)−Σ_(n=0) ^b (1/(n!)))     =(b−1)!a−Σ_(n=0) ^b ((b!)/(n!))  Note that (b−1)!a∈Z.  As n varies in the series, b!≥n!  ⇒((b!)/(n!))≥1 with ((b!)/(n!))∈Z so that (Σ_(n=0) ^b ((b!)/(n!)))∈Z.  Hence, x∈Z.   Since we also have e=Σ_(n=0) ^∞ (1/(n!)),  ∴ x=b!(Σ_(n=0) ^∞ (1/(n!))−Σ_(n=0) ^b (1/(n!)))      x=b!Σ_(n=b+1) ^∞ (1/(n!))=b!((1/((b+1)!))+(1/((b+2)!))+(1/((b+3)!))+(1/((b+4)!))+...)      x>0  For every term in the series in the  expression for x,where n≥b+1  ((b!)/(n!))=(1/((b+1)(b+2)(b+3)...(b+(n−b))))<(1/((b+1)^(n−b) ))  ∴x=Σ_(n=b+1) ^∞ ((b!)/(n!))<Σ_(n=b+1) ^∞ (1/((b+1)^(n−b) ))  let k=n−b.  ∴x<Σ_(k=1) ^∞ (1/((b+1)^k ))=((1/(b+1))/(1−(1/(b+1))))=(1/b)<1  So x<1. But∄x∈Z where 0<x<1.  So, by contradiction, e cannot be  rational; e is irrational.

$${Fourier}'{s}\:{Proof} \\ $$$${Suppose}\:{for}\:{contradiction}\:{that} \\ $$$${e}\:{is}\:{rational},\:{so}\:{we}\:{have} \\ $$$${e}=\frac{{a}}{{b}},\:\left({a},{b}\in\mathbb{Z},\:{b}\neq\mathrm{0}\right). \\ $$$${Define}\:{x}={b}!\left({e}−\underset{{n}=\mathrm{0}} {\overset{{b}} {\sum}}\frac{\mathrm{1}}{{n}!}\right)\:{where}\:{x}\in\mathbb{Z}. \\ $$$${To}\:{check}\:{that}\:{x}\in\mathbb{Z},\:{substitute}\:{e}=\frac{{a}}{{b}}. \\ $$$${x}={b}!\left(\frac{{a}}{{b}}−\underset{{n}=\mathrm{0}} {\overset{{b}} {\sum}}\frac{\mathrm{1}}{{n}!}\right) \\ $$$$\:\:\:=\left({b}−\mathrm{1}\right)!{a}−\underset{{n}=\mathrm{0}} {\overset{{b}} {\sum}}\frac{{b}!}{{n}!} \\ $$$${Note}\:{that}\:\left({b}−\mathrm{1}\right)!{a}\in\mathbb{Z}. \\ $$$${As}\:{n}\:{varies}\:{in}\:{the}\:{series},\:{b}!\geqslant{n}! \\ $$$$\Rightarrow\frac{{b}!}{{n}!}\geqslant\mathrm{1}\:{with}\:\frac{{b}!}{{n}!}\in\mathbb{Z}\:{so}\:{that}\:\left(\underset{{n}=\mathrm{0}} {\overset{{b}} {\sum}}\frac{{b}!}{{n}!}\right)\in\mathbb{Z}. \\ $$$${Hence},\:{x}\in\mathbb{Z}.\: \\ $$$${Since}\:{we}\:{also}\:{have}\:{e}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}, \\ $$$$\therefore\:{x}={b}!\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}−\underset{{n}=\mathrm{0}} {\overset{{b}} {\sum}}\frac{\mathrm{1}}{{n}!}\right) \\ $$$$\:\:\:\:{x}={b}!\underset{{n}={b}+\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}={b}!\left(\frac{\mathrm{1}}{\left({b}+\mathrm{1}\right)!}+\frac{\mathrm{1}}{\left({b}+\mathrm{2}\right)!}+\frac{\mathrm{1}}{\left({b}+\mathrm{3}\right)!}+\frac{\mathrm{1}}{\left({b}+\mathrm{4}\right)!}+...\right) \\ $$$$\:\:\:\:{x}>\mathrm{0} \\ $$$${For}\:{every}\:{term}\:{in}\:{the}\:{series}\:{in}\:{the} \\ $$$${expression}\:{for}\:{x},{where}\:{n}\geqslant{b}+\mathrm{1} \\ $$$$\frac{{b}!}{{n}!}=\frac{\mathrm{1}}{\left({b}+\mathrm{1}\right)\left({b}+\mathrm{2}\right)\left({b}+\mathrm{3}\right)...\left({b}+\left({n}−{b}\right)\right)}<\frac{\mathrm{1}}{\left({b}+\mathrm{1}\right)^{{n}−{b}} } \\ $$$$\therefore{x}=\underset{{n}={b}+\mathrm{1}} {\overset{\infty} {\sum}}\frac{{b}!}{{n}!}<\underset{{n}={b}+\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({b}+\mathrm{1}\right)^{{n}−{b}} } \\ $$$${let}\:{k}={n}−{b}. \\ $$$$\therefore{x}<\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({b}+\mathrm{1}\right)^{{k}} }=\frac{\mathrm{1}/\left({b}+\mathrm{1}\right)}{\mathrm{1}−\frac{\mathrm{1}}{{b}+\mathrm{1}}}=\frac{\mathrm{1}}{{b}}<\mathrm{1} \\ $$$${So}\:{x}<\mathrm{1}.\:{But}\nexists{x}\in\mathbb{Z}\:{where}\:\mathrm{0}<{x}<\mathrm{1}. \\ $$$${So},\:{by}\:{contradiction},\:{e}\:{cannot}\:{be} \\ $$$${rational};\:{e}\:{is}\:{irrational}. \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com