Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 31639 by Tinkutara last updated on 11/Mar/18

Answered by MJS last updated on 11/Mar/18

P∈par:  ((p),(((p^2 /4)−(p/2)+(5/4))) )  y′(p)=(p/2)−(1/2) (=k of tangent in P)  k of normal n in P: −((p/2)−(1/2))^(−1) =  =−(2/(p−1))  y=−(2/(p−1))x+d  in P:  (p^2 /4)−(p/2)+(5/4)=−((2p)/(p−1))+d  d=((p^3 −3p^2 +15p−5)/(4(p−1)))  n_P : y=−(2/(p−1))x+((p^3 −3p^2 +15p−5)/(4(p−1)))  now looking for Q∈par with  k(n_Q )=k(t_P )  −(2/(q−1))=(p/2)−(1/2)  q=1−(4/(p−1))  n_Q : y=−(2/(q−1))x+((q^3 −3q^2 +15q−5)/(4(q−1)))  ⇒  n_Q : y=((p−1)/2)x−((p^3 −9p^2 +15p−15)/(2(p−1)^2 ))  n_P ∩n_Q   x=((p^2 −5)/(2(p−1))); y=(((p^2 −2p+5)^2 )/(4(p−1)^2 ))  ⇒ y=x^2 −2x+5  points of intersection lie on  a parabola

$${P}\in{par}:\:\begin{pmatrix}{{p}}\\{\frac{{p}^{\mathrm{2}} }{\mathrm{4}}−\frac{{p}}{\mathrm{2}}+\frac{\mathrm{5}}{\mathrm{4}}}\end{pmatrix} \\ $$$${y}'\left({p}\right)=\frac{{p}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\:\left(={k}\:\mathrm{of}\:\mathrm{tangent}\:\mathrm{in}\:\mathrm{P}\right) \\ $$$${k}\:\mathrm{of}\:\mathrm{normal}\:{n}\:\mathrm{in}\:\mathrm{P}:\:−\left(\frac{{p}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{−\mathrm{1}} = \\ $$$$=−\frac{\mathrm{2}}{{p}−\mathrm{1}} \\ $$$${y}=−\frac{\mathrm{2}}{{p}−\mathrm{1}}{x}+{d} \\ $$$$\mathrm{in}\:{P}: \\ $$$$\frac{{p}^{\mathrm{2}} }{\mathrm{4}}−\frac{{p}}{\mathrm{2}}+\frac{\mathrm{5}}{\mathrm{4}}=−\frac{\mathrm{2}{p}}{{p}−\mathrm{1}}+{d} \\ $$$${d}=\frac{{p}^{\mathrm{3}} −\mathrm{3}{p}^{\mathrm{2}} +\mathrm{15}{p}−\mathrm{5}}{\mathrm{4}\left({p}−\mathrm{1}\right)} \\ $$$${n}_{{P}} :\:{y}=−\frac{\mathrm{2}}{{p}−\mathrm{1}}{x}+\frac{{p}^{\mathrm{3}} −\mathrm{3}{p}^{\mathrm{2}} +\mathrm{15}{p}−\mathrm{5}}{\mathrm{4}\left({p}−\mathrm{1}\right)} \\ $$$$\mathrm{now}\:\mathrm{looking}\:\mathrm{for}\:\mathrm{Q}\in{par}\:\mathrm{with} \\ $$$${k}\left({n}_{{Q}} \right)={k}\left({t}_{{P}} \right) \\ $$$$−\frac{\mathrm{2}}{{q}−\mathrm{1}}=\frac{{p}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${q}=\mathrm{1}−\frac{\mathrm{4}}{{p}−\mathrm{1}} \\ $$$${n}_{{Q}} :\:{y}=−\frac{\mathrm{2}}{{q}−\mathrm{1}}{x}+\frac{{q}^{\mathrm{3}} −\mathrm{3}{q}^{\mathrm{2}} +\mathrm{15}{q}−\mathrm{5}}{\mathrm{4}\left({q}−\mathrm{1}\right)} \\ $$$$\Rightarrow \\ $$$${n}_{{Q}} :\:{y}=\frac{{p}−\mathrm{1}}{\mathrm{2}}{x}−\frac{{p}^{\mathrm{3}} −\mathrm{9}{p}^{\mathrm{2}} +\mathrm{15}{p}−\mathrm{15}}{\mathrm{2}\left({p}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${n}_{{P}} \cap{n}_{{Q}} \\ $$$${x}=\frac{{p}^{\mathrm{2}} −\mathrm{5}}{\mathrm{2}\left({p}−\mathrm{1}\right)};\:{y}=\frac{\left({p}^{\mathrm{2}} −\mathrm{2}{p}+\mathrm{5}\right)^{\mathrm{2}} }{\mathrm{4}\left({p}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:{y}={x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{5} \\ $$$$\mathrm{points}\:\mathrm{of}\:\mathrm{intersection}\:\mathrm{lie}\:\mathrm{on} \\ $$$$\mathrm{a}\:\mathrm{parabola} \\ $$

Commented by Tinkutara last updated on 11/Mar/18

But answer is (x−1)^2 =y−2  Is it wrong in book?

$${But}\:{answer}\:{is}\:\left({x}−\mathrm{1}\right)^{\mathrm{2}} ={y}−\mathrm{2} \\ $$$${Is}\:{it}\:{wrong}\:{in}\:{book}? \\ $$

Commented by MJS last updated on 11/Mar/18

...that would be  y=x^2 −2x+3  I will check it again

$$...\mathrm{that}\:\mathrm{would}\:\mathrm{be} \\ $$$${y}={x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{3} \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{check}\:\mathrm{it}\:\mathrm{again} \\ $$

Commented by MJS last updated on 11/Mar/18

I found no mistake in my calculation,  please check it again

$$\mathrm{I}\:\mathrm{found}\:\mathrm{no}\:\mathrm{mistake}\:\mathrm{in}\:\mathrm{my}\:\mathrm{calculation}, \\ $$$$\mathrm{please}\:\mathrm{check}\:\mathrm{it}\:\mathrm{again} \\ $$

Commented by Tinkutara last updated on 12/Mar/18

I saw again but answer given is only  (x−1)^2 =y−2. How to verify which is  correct?

$${I}\:{saw}\:{again}\:{but}\:{answer}\:{given}\:{is}\:{only} \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} ={y}−\mathrm{2}.\:{How}\:{to}\:{verify}\:{which}\:{is} \\ $$$${correct}? \\ $$

Commented by MJS last updated on 12/Mar/18

let′s check for one pair of points  f(x)=(x^2 /4)−(x/2)+(5/4)  f′(x)=((x−1)/2)=k_(tangents) =k_t   k_(normals) =−(2/(x−1))=k_n   P= ((7),((10)) ); k_t =3; k_n =−(1/3)  normal in P:  y=−(x/3)+d ⇒ 10=−(7/3)+d ⇒ d=((37)/3)  n_P : y=−(x/3)+((37)/3)  now we search Q with Q∈par and  n_Q ∥t_P  (⇒ n_Q ⊥n_P )  Q= ((q),((f(q))) )  n_Q : y=kx+d with k=k_n =−(2/(q−1))  and k_n  in Q = k_t  in P  ⇒  ⇒ −(2/(q−1))=3 ⇒ q=(1/3) ⇒ f(q)=((10)/9)  Q= (((1/3)),(((10)/9)) )  normal in Q:  y=3x+d ⇒ ((10)/9)=1+d ⇒ d=(1/9)  n_Q : y=3x+(1/9)  intersection of n_P  and n_Q :  n_P : y=−(x/3)+((37)/3)  n_Q : y=3x+(1/9)  3x+(1/9)=−(x/3)+((37)/3) ⇒ x=((11)/3) ⇒ y=((100)/9)  S_(n_P n_Q ) = ((((11)/3)),(((100)/9)) )  intersection point on “my” parabola:  y=x^2 −2x+5=((100)/9)   or on “book′s” parabola:  y=x^2 −2x+3=((82)/9)  so the book is wrong

$$\mathrm{let}'\mathrm{s}\:\mathrm{check}\:\mathrm{for}\:\mathrm{one}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{points} \\ $$$${f}\left({x}\right)=\frac{{x}^{\mathrm{2}} }{\mathrm{4}}−\frac{{x}}{\mathrm{2}}+\frac{\mathrm{5}}{\mathrm{4}} \\ $$$${f}'\left({x}\right)=\frac{{x}−\mathrm{1}}{\mathrm{2}}={k}_{{tangents}} ={k}_{{t}} \\ $$$${k}_{{normals}} =−\frac{\mathrm{2}}{{x}−\mathrm{1}}={k}_{{n}} \\ $$$${P}=\begin{pmatrix}{\mathrm{7}}\\{\mathrm{10}}\end{pmatrix};\:{k}_{{t}} =\mathrm{3};\:{k}_{{n}} =−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{normal}\:\mathrm{in}\:{P}: \\ $$$${y}=−\frac{{x}}{\mathrm{3}}+{d}\:\Rightarrow\:\mathrm{10}=−\frac{\mathrm{7}}{\mathrm{3}}+{d}\:\Rightarrow\:{d}=\frac{\mathrm{37}}{\mathrm{3}} \\ $$$${n}_{{P}} :\:{y}=−\frac{{x}}{\mathrm{3}}+\frac{\mathrm{37}}{\mathrm{3}} \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{search}\:{Q}\:\mathrm{with}\:{Q}\in{par}\:\mathrm{and} \\ $$$${n}_{{Q}} \parallel{t}_{{P}} \:\left(\Rightarrow\:{n}_{{Q}} \bot{n}_{{P}} \right) \\ $$$${Q}=\begin{pmatrix}{{q}}\\{{f}\left({q}\right)}\end{pmatrix} \\ $$$${n}_{{Q}} :\:{y}={kx}+{d}\:\mathrm{with}\:{k}={k}_{{n}} =−\frac{\mathrm{2}}{{q}−\mathrm{1}} \\ $$$$\mathrm{and}\:{k}_{{n}} \:\mathrm{in}\:{Q}\:=\:{k}_{{t}} \:\mathrm{in}\:{P}\:\:\Rightarrow \\ $$$$\Rightarrow\:−\frac{\mathrm{2}}{{q}−\mathrm{1}}=\mathrm{3}\:\Rightarrow\:{q}=\frac{\mathrm{1}}{\mathrm{3}}\:\Rightarrow\:{f}\left({q}\right)=\frac{\mathrm{10}}{\mathrm{9}} \\ $$$${Q}=\begin{pmatrix}{\frac{\mathrm{1}}{\mathrm{3}}}\\{\frac{\mathrm{10}}{\mathrm{9}}}\end{pmatrix} \\ $$$$\mathrm{normal}\:\mathrm{in}\:{Q}: \\ $$$${y}=\mathrm{3}{x}+{d}\:\Rightarrow\:\frac{\mathrm{10}}{\mathrm{9}}=\mathrm{1}+{d}\:\Rightarrow\:{d}=\frac{\mathrm{1}}{\mathrm{9}} \\ $$$${n}_{{Q}} :\:{y}=\mathrm{3}{x}+\frac{\mathrm{1}}{\mathrm{9}} \\ $$$$\mathrm{intersection}\:\mathrm{of}\:{n}_{{P}} \:\mathrm{and}\:{n}_{{Q}} : \\ $$$${n}_{{P}} :\:{y}=−\frac{{x}}{\mathrm{3}}+\frac{\mathrm{37}}{\mathrm{3}} \\ $$$${n}_{{Q}} :\:{y}=\mathrm{3}{x}+\frac{\mathrm{1}}{\mathrm{9}} \\ $$$$\mathrm{3}{x}+\frac{\mathrm{1}}{\mathrm{9}}=−\frac{{x}}{\mathrm{3}}+\frac{\mathrm{37}}{\mathrm{3}}\:\Rightarrow\:{x}=\frac{\mathrm{11}}{\mathrm{3}}\:\Rightarrow\:{y}=\frac{\mathrm{100}}{\mathrm{9}} \\ $$$${S}_{{n}_{{P}} {n}_{{Q}} } =\begin{pmatrix}{\frac{\mathrm{11}}{\mathrm{3}}}\\{\frac{\mathrm{100}}{\mathrm{9}}}\end{pmatrix} \\ $$$$\mathrm{intersection}\:\mathrm{point}\:\mathrm{on}\:``\mathrm{my}''\:\mathrm{parabola}: \\ $$$${y}={x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{5}=\frac{\mathrm{100}}{\mathrm{9}}\: \\ $$$$\mathrm{or}\:\mathrm{on}\:``\mathrm{book}'\mathrm{s}''\:\mathrm{parabola}: \\ $$$${y}={x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{3}=\frac{\mathrm{82}}{\mathrm{9}} \\ $$$$\mathrm{so}\:\mathrm{the}\:\mathrm{book}\:\mathrm{is}\:\mathrm{wrong} \\ $$

Commented by Tinkutara last updated on 12/Mar/18

Thank you very much Sir! I got the answer. ��������

Terms of Service

Privacy Policy

Contact: info@tinkutara.com