Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 31743 by rahul 19 last updated on 13/Mar/18

 Find the value of : Σ_(i=0) ^∞ Σ_(j=0) ^∞ Σ_(k=0) ^∞  (1/(3^i 3^j 3^k )).  case 1: i≠j≠k.  case 2: i<j<k.

$$\:{Find}\:{the}\:{value}\:{of}\::\:\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{j}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{3}^{{i}} \mathrm{3}^{{j}} \mathrm{3}^{{k}} }. \\ $$ $${case}\:\mathrm{1}:\:{i}\neq{j}\neq{k}. \\ $$ $${case}\:\mathrm{2}:\:{i}<{j}<{k}. \\ $$

Answered by mrW2 last updated on 13/Mar/18

Σ_(k=0) ^∞ (1/3^k )=1+(1/3)+(1/3^2 )+....=(1/(1−(1/3)))=(3/2)  Σ_(i=0) ^∞ Σ_(j=0) ^∞ Σ_(k=0) ^∞  (1/(3^i 3^j 3^k ))  =Σ_(i=0) ^∞ Σ_(j=0) ^∞ {(1/(3^i 3^j ))(Σ_(k=0) ^∞  (1/3^k ))}  =(3/2)Σ_(i=0) ^∞ Σ_(j=0) ^∞ (1/(3^i 3^j ))  =(3/2)Σ_(i=0) ^∞ {(1/3^i )(Σ_(j=0) ^∞ (1/3^j ))}  =(3/2)×(3/2)Σ_(i=0) ^∞ (1/3^i )  =(3/2)×(3/2)×(3/2)  =((27)/8)

$$\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{3}^{{k}} }=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+....=\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$ $$\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{j}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{3}^{{i}} \mathrm{3}^{{j}} \mathrm{3}^{{k}} } \\ $$ $$=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{j}=\mathrm{0}} {\overset{\infty} {\sum}}\left\{\frac{\mathrm{1}}{\mathrm{3}^{{i}} \mathrm{3}^{{j}} }\left(\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{3}^{{k}} }\right)\right\} \\ $$ $$=\frac{\mathrm{3}}{\mathrm{2}}\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{j}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{3}^{{i}} \mathrm{3}^{{j}} } \\ $$ $$=\frac{\mathrm{3}}{\mathrm{2}}\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\left\{\frac{\mathrm{1}}{\mathrm{3}^{{i}} }\left(\underset{{j}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{3}^{{j}} }\right)\right\} \\ $$ $$=\frac{\mathrm{3}}{\mathrm{2}}×\frac{\mathrm{3}}{\mathrm{2}}\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{3}^{{i}} } \\ $$ $$=\frac{\mathrm{3}}{\mathrm{2}}×\frac{\mathrm{3}}{\mathrm{2}}×\frac{\mathrm{3}}{\mathrm{2}} \\ $$ $$=\frac{\mathrm{27}}{\mathrm{8}} \\ $$

Commented bymrW2 last updated on 14/Mar/18

Σ_(i=0) ^∞ Σ_(j=0) ^∞ Σ_(k=0) ^∞  (1/(3^i 3^j 3^k ))=((27)/8)  this is correct.  if you need Σ_(i=0) ^∞ Σ_(j=0) ^∞ Σ_(k=0) ^∞ _(i≠j≠k)  (1/(3^i 3^j 3^k )) or  Σ_(i=0) ^∞ Σ_(j=0) ^∞ Σ_(k=0) ^∞ _(i>j>k)  (1/(3^i 3^j 3^k )) then the result is different.

$$\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{j}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{3}^{{i}} \mathrm{3}^{{j}} \mathrm{3}^{{k}} }=\frac{\mathrm{27}}{\mathrm{8}} \\ $$ $${this}\:{is}\:{correct}. \\ $$ $${if}\:{you}\:{need}\:\underset{{i}\neq{j}\neq{k}} {\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{j}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}}\:\frac{\mathrm{1}}{\mathrm{3}^{{i}} \mathrm{3}^{{j}} \mathrm{3}^{{k}} }\:{or} \\ $$ $$\underset{{i}>{j}>{k}} {\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{j}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}}\:\frac{\mathrm{1}}{\mathrm{3}^{{i}} \mathrm{3}^{{j}} \mathrm{3}^{{k}} }\:{then}\:{the}\:{result}\:{is}\:{different}. \\ $$

Commented byrahul 19 last updated on 14/Mar/18

But what is the difference when  i≠j≠k and i<j<k are present in ques.  (original q.) and when that is not mention  in the ques. (the way u solved).

$${But}\:{what}\:{is}\:{the}\:{difference}\:{when} \\ $$ $${i}\neq{j}\neq{k}\:{and}\:{i}<{j}<{k}\:{are}\:{present}\:{in}\:{ques}. \\ $$ $$\left({original}\:{q}.\right)\:{and}\:{when}\:{that}\:{is}\:{not}\:{mention} \\ $$ $${in}\:{the}\:{ques}.\:\left({the}\:{way}\:{u}\:{solved}\right). \\ $$

Commented bymrW2 last updated on 14/Mar/18

look at an example:  Σ_(i=1) ^3 Σ_(j=1) ^3 a^i b^j =a^1 (b^1 +b^2 +b^3 )+a^2 (b^1 +b^2 +b^3 )+a^3 (b^1 +b^2 +b^3 )=(a^1 +a^2 +a^3 )(b^1 +b^2 +b^3 )  (i and j are independent)    Σ_(i=1) ^3 Σ_(j=1) ^3 _(i≠j) a^i b^j =a^1 (b^2 +b^3 )+a^2 (b^1 +b^3 )+a^3 (b^1 +b^2 )  (i and j are dependent)    Σ_(i=1) ^3 Σ_(j=1) ^3 _(i<j) a^i b^j =a^1 (b^2 +b^3 )+a^2 b^3   (i and j are dependent)

$${look}\:{at}\:{an}\:{example}: \\ $$ $$\underset{{i}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}\underset{{j}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}{a}^{{i}} {b}^{{j}} ={a}^{\mathrm{1}} \left({b}^{\mathrm{1}} +{b}^{\mathrm{2}} +{b}^{\mathrm{3}} \right)+{a}^{\mathrm{2}} \left({b}^{\mathrm{1}} +{b}^{\mathrm{2}} +{b}^{\mathrm{3}} \right)+{a}^{\mathrm{3}} \left({b}^{\mathrm{1}} +{b}^{\mathrm{2}} +{b}^{\mathrm{3}} \right)=\left({a}^{\mathrm{1}} +{a}^{\mathrm{2}} +{a}^{\mathrm{3}} \right)\left({b}^{\mathrm{1}} +{b}^{\mathrm{2}} +{b}^{\mathrm{3}} \right) \\ $$ $$\left({i}\:{and}\:{j}\:{are}\:{independent}\right) \\ $$ $$ \\ $$ $$\underset{{i}\neq{j}} {\underset{{i}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}\underset{{j}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}}{a}^{{i}} {b}^{{j}} ={a}^{\mathrm{1}} \left({b}^{\mathrm{2}} +{b}^{\mathrm{3}} \right)+{a}^{\mathrm{2}} \left({b}^{\mathrm{1}} +{b}^{\mathrm{3}} \right)+{a}^{\mathrm{3}} \left({b}^{\mathrm{1}} +{b}^{\mathrm{2}} \right) \\ $$ $$\left({i}\:{and}\:{j}\:{are}\:{dependent}\right) \\ $$ $$ \\ $$ $$\underset{{i}<{j}} {\underset{{i}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}\underset{{j}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}}{a}^{{i}} {b}^{{j}} ={a}^{\mathrm{1}} \left({b}^{\mathrm{2}} +{b}^{\mathrm{3}} \right)+{a}^{\mathrm{2}} {b}^{\mathrm{3}} \\ $$ $$\left({i}\:{and}\:{j}\:{are}\:{dependent}\right) \\ $$

Commented byrahul 19 last updated on 14/Mar/18

ok sir, now understood when its in  2 variables (i,j).  pls also show similar example for  3 variable (i,j,k) ?

$${ok}\:{sir},\:{now}\:{understood}\:{when}\:{its}\:{in} \\ $$ $$\mathrm{2}\:{variables}\:\left({i},{j}\right). \\ $$ $${pls}\:{also}\:{show}\:{similar}\:{example}\:{for} \\ $$ $$\mathrm{3}\:{variable}\:\left({i},{j},{k}\right)\:? \\ $$

Commented byabdo imad last updated on 14/Mar/18

there is a dfference between  Σ_(i j) a_i bj and  Σ_(i,j andi≠j) a_i a_j   and the type of this triple sum is difficut to treat  and if you give interest you must take a look to  sommables family ....

$${there}\:{is}\:{a}\:{dfference}\:{between}\:\:\sum_{{i}\:{j}} {a}_{{i}} {bj}\:{and}\:\:\sum_{{i},{j}\:{andi}\neq{j}} {a}_{{i}} {a}_{{j}} \\ $$ $${and}\:{the}\:{type}\:{of}\:{this}\:{triple}\:{sum}\:{is}\:{difficut}\:{to}\:{treat} \\ $$ $${and}\:{if}\:{you}\:{give}\:{interest}\:{you}\:{must}\:{take}\:{a}\:{look}\:{to} \\ $$ $${sommables}\:{family}\:.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com