Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 31763 by RAMANUJAN last updated on 14/Mar/18

please find the integral solutions (x and y)   (xy−7)^2  =x^2  +y^2

$${please}\:{find}\:{the}\:{integral}\:{solutions}\:\left({x}\:{and}\:{y}\right)\: \\ $$$$\left({xy}−\mathrm{7}\right)^{\mathrm{2}} \:={x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \\ $$

Answered by MJS last updated on 14/Mar/18

(−7,0)  (−4,−3)  (−3,−4)  (0,−7)  (0,7)  (3,4)  (4,3)  (7,0)

$$\left(−\mathrm{7},\mathrm{0}\right) \\ $$$$\left(−\mathrm{4},−\mathrm{3}\right) \\ $$$$\left(−\mathrm{3},−\mathrm{4}\right) \\ $$$$\left(\mathrm{0},−\mathrm{7}\right) \\ $$$$\left(\mathrm{0},\mathrm{7}\right) \\ $$$$\left(\mathrm{3},\mathrm{4}\right) \\ $$$$\left(\mathrm{4},\mathrm{3}\right) \\ $$$$\left(\mathrm{7},\mathrm{0}\right) \\ $$

Commented by MJS last updated on 14/Mar/18

...now I see that  4×3−7=5  4^2 −3^2 =7  3^2 +4^2 =5^2   these might have helped with  the construction of the given  equation

$$...\mathrm{now}\:\mathrm{I}\:\mathrm{see}\:\mathrm{that} \\ $$$$\mathrm{4}×\mathrm{3}−\mathrm{7}=\mathrm{5} \\ $$$$\mathrm{4}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} =\mathrm{7} \\ $$$$\mathrm{3}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} \\ $$$$\mathrm{these}\:\mathrm{might}\:\mathrm{have}\:\mathrm{helped}\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{construction}\:\mathrm{of}\:\mathrm{the}\:\mathrm{given} \\ $$$$\mathrm{equation} \\ $$

Commented by Joel578 last updated on 14/Mar/18

Sir pls explain the way. I′m just guessing the  answer

$$\mathrm{Sir}\:\mathrm{pls}\:\mathrm{explain}\:\mathrm{the}\:\mathrm{way}.\:\mathrm{I}'\mathrm{m}\:\mathrm{just}\:\mathrm{guessing}\:\mathrm{the} \\ $$$$\mathrm{answer} \\ $$

Commented by MJS last updated on 14/Mar/18

I solved the equation  y=((7x±(√(x^4 −x^2 +49)))/(x^2 −1))  ⇒ x^4 −x^2 +49 must be a square number  then I tried...

$$\mathrm{I}\:\mathrm{solved}\:\mathrm{the}\:\mathrm{equation} \\ $$$${y}=\frac{\mathrm{7}{x}\pm\sqrt{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} +\mathrm{49}}}{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\Rightarrow\:{x}^{\mathrm{4}} −{x}^{\mathrm{2}} +\mathrm{49}\:\mathrm{must}\:\mathrm{be}\:\mathrm{a}\:\mathrm{square}\:\mathrm{number} \\ $$$$\mathrm{then}\:\mathrm{I}\:\mathrm{tried}... \\ $$

Answered by Joel578 last updated on 14/Mar/18

(0, ±7) and (±7, 0)

$$\left(\mathrm{0},\:\pm\mathrm{7}\right)\:\mathrm{and}\:\left(\pm\mathrm{7},\:\mathrm{0}\right) \\ $$

Answered by ajfour last updated on 14/Mar/18

x^2 y^2 −14xy+49=x^2 +y^2   x^2 y^2 −16xy+64=(x−y)^2 +15  (xy−8)^2 =(x−y)^2 +15  (xy−8−x+y)(xy−8+x−y)=15  ⇒ xy−8−x+y=3   and        xy−8+x−y=5  ⇒  xy=12  and  x−y=1  ⇒   (4,3) or (−3,−4)  alternatively         xy−8−x+y=5   and         xy−8+x−y=3  ⇒   xy=12  and  y−x=1  so  (3,4) or (−4,−3)  alternatively           xy−8−x+y=−5  and          xy−8+x−y=−3  ⇒     xy=8   and   x−y=1  ⇒  no integral solution  or     xy−8−x+y=−3   and           xy−8+x−y=−5  ⇒     xy=8  and  y−x=1  ⇒ no integral solution , again.  otherwise      xy−8−x+y =15  and      xy−8+x−y=1  ⇒ xy=16  and y−x=7      ⇒ no integral solution  alternatively      xy−8−x+y=−15  and      xy−8+x−y=−1  ⇒    xy=0   and  x−y=7  ⇒   (7,0)  and (0,−7)   otherwise        xy−8−x+y=−1  and        xy−8+x−y=−15  ⇒    xy=0  and  y−x=7  ⇒    (0,7)  and  (−7,0)  hence the integral solutions  for (x,y) are     (4,3), (−3,−4), (3,4), (−4,−3),  and (7,0), (0,−7), (0,7), (−7,0) .

$${x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{14}{xy}+\mathrm{49}={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{16}{xy}+\mathrm{64}=\left({x}−{y}\right)^{\mathrm{2}} +\mathrm{15} \\ $$$$\left({xy}−\mathrm{8}\right)^{\mathrm{2}} =\left({x}−{y}\right)^{\mathrm{2}} +\mathrm{15} \\ $$$$\left({xy}−\mathrm{8}−{x}+{y}\right)\left({xy}−\mathrm{8}+{x}−{y}\right)=\mathrm{15} \\ $$$$\Rightarrow\:{xy}−\mathrm{8}−{x}+{y}=\mathrm{3}\:\:\:{and} \\ $$$$\:\:\:\:\:\:{xy}−\mathrm{8}+{x}−{y}=\mathrm{5} \\ $$$$\Rightarrow\:\:{xy}=\mathrm{12}\:\:{and}\:\:{x}−{y}=\mathrm{1} \\ $$$$\Rightarrow\:\:\:\left(\mathrm{4},\mathrm{3}\right)\:{or}\:\left(−\mathrm{3},−\mathrm{4}\right) \\ $$$${alternatively} \\ $$$$\:\:\:\:\:\:\:{xy}−\mathrm{8}−{x}+{y}=\mathrm{5}\:\:\:{and} \\ $$$$\:\:\:\:\:\:\:{xy}−\mathrm{8}+{x}−{y}=\mathrm{3} \\ $$$$\Rightarrow\:\:\:{xy}=\mathrm{12}\:\:{and}\:\:{y}−{x}=\mathrm{1} \\ $$$${so}\:\:\left(\mathrm{3},\mathrm{4}\right)\:{or}\:\left(−\mathrm{4},−\mathrm{3}\right) \\ $$$${alternatively} \\ $$$$\:\:\:\:\:\:\:\:\:{xy}−\mathrm{8}−{x}+{y}=−\mathrm{5}\:\:{and} \\ $$$$\:\:\:\:\:\:\:\:{xy}−\mathrm{8}+{x}−{y}=−\mathrm{3} \\ $$$$\Rightarrow\:\:\:\:\:{xy}=\mathrm{8}\:\:\:{and}\:\:\:{x}−{y}=\mathrm{1} \\ $$$$\Rightarrow\:\:{no}\:{integral}\:{solution} \\ $$$${or}\:\:\:\:\:{xy}−\mathrm{8}−{x}+{y}=−\mathrm{3}\:\:\:{and} \\ $$$$\:\:\:\:\:\:\:\:\:{xy}−\mathrm{8}+{x}−{y}=−\mathrm{5} \\ $$$$\Rightarrow\:\:\:\:\:{xy}=\mathrm{8}\:\:{and}\:\:{y}−{x}=\mathrm{1} \\ $$$$\Rightarrow\:{no}\:{integral}\:{solution}\:,\:{again}. \\ $$$${otherwise} \\ $$$$\:\:\:\:{xy}−\mathrm{8}−{x}+{y}\:=\mathrm{15}\:\:{and} \\ $$$$\:\:\:\:{xy}−\mathrm{8}+{x}−{y}=\mathrm{1} \\ $$$$\Rightarrow\:{xy}=\mathrm{16}\:\:{and}\:{y}−{x}=\mathrm{7} \\ $$$$\:\:\:\:\Rightarrow\:{no}\:{integral}\:{solution} \\ $$$${alternatively} \\ $$$$\:\:\:\:{xy}−\mathrm{8}−{x}+{y}=−\mathrm{15}\:\:{and} \\ $$$$\:\:\:\:{xy}−\mathrm{8}+{x}−{y}=−\mathrm{1} \\ $$$$\Rightarrow\:\:\:\:{xy}=\mathrm{0}\:\:\:{and}\:\:{x}−{y}=\mathrm{7} \\ $$$$\Rightarrow\:\:\:\left(\mathrm{7},\mathrm{0}\right)\:\:{and}\:\left(\mathrm{0},−\mathrm{7}\right) \\ $$$$\:{otherwise} \\ $$$$\:\:\:\:\:\:{xy}−\mathrm{8}−{x}+{y}=−\mathrm{1}\:\:{and} \\ $$$$\:\:\:\:\:\:{xy}−\mathrm{8}+{x}−{y}=−\mathrm{15} \\ $$$$\Rightarrow\:\:\:\:{xy}=\mathrm{0}\:\:{and}\:\:{y}−{x}=\mathrm{7} \\ $$$$\Rightarrow\:\:\:\:\left(\mathrm{0},\mathrm{7}\right)\:\:{and}\:\:\left(−\mathrm{7},\mathrm{0}\right) \\ $$$${hence}\:{the}\:{integral}\:{solutions} \\ $$$${for}\:\left({x},{y}\right)\:{are}\:\: \\ $$$$\:\left(\mathrm{4},\mathrm{3}\right),\:\left(−\mathrm{3},−\mathrm{4}\right),\:\left(\mathrm{3},\mathrm{4}\right),\:\left(−\mathrm{4},−\mathrm{3}\right), \\ $$$${and}\:\left(\mathrm{7},\mathrm{0}\right),\:\left(\mathrm{0},−\mathrm{7}\right),\:\left(\mathrm{0},\mathrm{7}\right),\:\left(−\mathrm{7},\mathrm{0}\right)\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com