Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 31804 by rahul 19 last updated on 15/Mar/18

A quadratic equation p(x)=0 having  coefficient of x^2  unity is such that  p(x)=0 and p(p(p(x)))=0 have a   common root then,  prove that :  p(0)×p(1)=0.

$${A}\:{quadratic}\:{equation}\:{p}\left({x}\right)=\mathrm{0}\:{having} \\ $$$${coefficient}\:{of}\:{x}^{\mathrm{2}} \:{unity}\:{is}\:{such}\:{that} \\ $$$${p}\left({x}\right)=\mathrm{0}\:{and}\:{p}\left({p}\left({p}\left({x}\right)\right)\right)=\mathrm{0}\:{have}\:{a}\: \\ $$$${common}\:{root}\:{then}, \\ $$$${prove}\:{that}\::\:\:{p}\left(\mathrm{0}\right)×{p}\left(\mathrm{1}\right)=\mathrm{0}. \\ $$

Answered by MJS last updated on 15/Mar/18

p(x)=x^2 +bx+c  p(0)×p(1)=0 ⇒ p(0)=0∨p(1)=0    case 1  p(0)=0 ⇒ c=0  p(x)=(x+b)x  p(p(x))=q(x)  p(p(p(x)))=p(q(x))=r(x)    q(x)=(p(x)+b)p(x) ⇒   ⇒ q(0)=0  r(x)=(q(x)+b)q(x) ⇒  ⇒ r(0)=0 ⇒  ⇒ 0= common root of p(x) and r(x)    case 2  p(1)=0  p(x)=(x−1)(x−c)  [with b=−c−1; p(x)=x^2 −(c+1)x+c]  q(x)=(p(x)−1)(p(x)−c)=  =p^2 (x)−(c+1)p(x)+c  r(x)=[p^2 (x)−(c+1)p(x)+c−1]×  ×[p^2 (x)−(c+1)p(x)]=  =[...]×[p(x)−(c+1)]×p(x) ⇒  ⇒ r(1)=0 ⇒  ⇒ 1= common root of p(x) and r(x)

$${p}\left({x}\right)={x}^{\mathrm{2}} +{bx}+{c} \\ $$$${p}\left(\mathrm{0}\right)×{p}\left(\mathrm{1}\right)=\mathrm{0}\:\Rightarrow\:{p}\left(\mathrm{0}\right)=\mathrm{0}\vee{p}\left(\mathrm{1}\right)=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{case}\:\mathrm{1} \\ $$$${p}\left(\mathrm{0}\right)=\mathrm{0}\:\Rightarrow\:{c}=\mathrm{0} \\ $$$${p}\left({x}\right)=\left({x}+{b}\right){x} \\ $$$${p}\left({p}\left({x}\right)\right)={q}\left({x}\right) \\ $$$${p}\left({p}\left({p}\left({x}\right)\right)\right)={p}\left({q}\left({x}\right)\right)={r}\left({x}\right) \\ $$$$ \\ $$$${q}\left({x}\right)=\left({p}\left({x}\right)+{b}\right){p}\left({x}\right)\:\Rightarrow\: \\ $$$$\Rightarrow\:{q}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${r}\left({x}\right)=\left({q}\left({x}\right)+{b}\right){q}\left({x}\right)\:\Rightarrow \\ $$$$\Rightarrow\:{r}\left(\mathrm{0}\right)=\mathrm{0}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{0}=\:\mathrm{common}\:\mathrm{root}\:\mathrm{of}\:{p}\left({x}\right)\:\mathrm{and}\:{r}\left({x}\right) \\ $$$$ \\ $$$$\mathrm{case}\:\mathrm{2} \\ $$$${p}\left(\mathrm{1}\right)=\mathrm{0} \\ $$$${p}\left({x}\right)=\left({x}−\mathrm{1}\right)\left({x}−{c}\right) \\ $$$$\left[\mathrm{with}\:{b}=−{c}−\mathrm{1};\:{p}\left({x}\right)={x}^{\mathrm{2}} −\left({c}+\mathrm{1}\right){x}+{c}\right] \\ $$$${q}\left({x}\right)=\left({p}\left({x}\right)−\mathrm{1}\right)\left({p}\left({x}\right)−{c}\right)= \\ $$$$={p}^{\mathrm{2}} \left({x}\right)−\left({c}+\mathrm{1}\right){p}\left({x}\right)+{c} \\ $$$${r}\left({x}\right)=\left[{p}^{\mathrm{2}} \left({x}\right)−\left({c}+\mathrm{1}\right){p}\left({x}\right)+{c}−\mathrm{1}\right]× \\ $$$$×\left[{p}^{\mathrm{2}} \left({x}\right)−\left({c}+\mathrm{1}\right){p}\left({x}\right)\right]= \\ $$$$=\left[...\right]×\left[{p}\left({x}\right)−\left({c}+\mathrm{1}\right)\right]×{p}\left({x}\right)\:\Rightarrow \\ $$$$\Rightarrow\:{r}\left(\mathrm{1}\right)=\mathrm{0}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{1}=\:\mathrm{common}\:\mathrm{root}\:\mathrm{of}\:{p}\left({x}\right)\:\mathrm{and}\:{r}\left({x}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com