Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 31915 by rahul 19 last updated on 16/Mar/18

If :   (x^2 +x+2)^2 −(a−3)(x^2 +x+1)(x^2 +x+2)  + (a−4)(x^2 +x+1)^2 =0 has at least   one root , then find complete set of   values of a.

$$\boldsymbol{{If}}\::\: \\ $$$$\left({x}^{\mathrm{2}} +{x}+\mathrm{2}\right)^{\mathrm{2}} −\left({a}−\mathrm{3}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{2}\right) \\ $$$$+\:\left({a}−\mathrm{4}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0}\:{has}\:{at}\:{least}\: \\ $$$${one}\:{root}\:,\:{then}\:{find}\:{complete}\:{set}\:{of}\: \\ $$$${values}\:{of}\:{a}. \\ $$

Commented by rahul 19 last updated on 16/Mar/18

my try :  let x^2 +x+1= t.  ⇒ (t+1)^2 −(a−3)t(t+1)+(a−4)t^2 =0  since it has atleast one root,  ⇒ Discriminant =0  ⇒(a−3)^2 t^2 −4t^2 (a−4)≥0  ⇒a^2 t^2 +25t^2 −10at^2 ≥0  ⇒t^2 (a−5)^2 ≥0  ⇒a≥5 ( t≠0) hence range = [5,∞).  but correct ans. is (5,((19)/3)].

$${my}\:{try}\:: \\ $$$${let}\:{x}^{\mathrm{2}} +{x}+\mathrm{1}=\:{t}. \\ $$$$\Rightarrow\:\left({t}+\mathrm{1}\right)^{\mathrm{2}} −\left({a}−\mathrm{3}\right){t}\left({t}+\mathrm{1}\right)+\left({a}−\mathrm{4}\right){t}^{\mathrm{2}} =\mathrm{0} \\ $$$${since}\:{it}\:{has}\:{atleast}\:{one}\:{root}, \\ $$$$\Rightarrow\:{Discriminant}\:=\mathrm{0} \\ $$$$\Rightarrow\left({a}−\mathrm{3}\right)^{\mathrm{2}} {t}^{\mathrm{2}} −\mathrm{4}{t}^{\mathrm{2}} \left({a}−\mathrm{4}\right)\geqslant\mathrm{0} \\ $$$$\Rightarrow{a}^{\mathrm{2}} {t}^{\mathrm{2}} +\mathrm{25}{t}^{\mathrm{2}} −\mathrm{10}{at}^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\Rightarrow{t}^{\mathrm{2}} \left({a}−\mathrm{5}\right)^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\Rightarrow{a}\geqslant\mathrm{5}\:\left(\:{t}\neq\mathrm{0}\right)\:{hence}\:{range}\:=\:\left[\mathrm{5},\infty\right). \\ $$$${but}\:{correct}\:{ans}.\:{is}\:\left(\mathrm{5},\frac{\mathrm{19}}{\mathrm{3}}\right].\: \\ $$

Commented by mrW2 last updated on 16/Mar/18

Discriminant may not contain the  variable itself. it can only contain  the constants.  correct:  ax^2 +bx+c=0  D=b^2 −4ac    not correct:  ax^2 +b(x+d)x+c=0  D=b^2 (x+d)^2 −4ac

$${Discriminant}\:{may}\:{not}\:{contain}\:{the} \\ $$$${variable}\:{itself}.\:{it}\:{can}\:{only}\:{contain} \\ $$$${the}\:{constants}. \\ $$$${correct}: \\ $$$${ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$${D}={b}^{\mathrm{2}} −\mathrm{4}{ac} \\ $$$$ \\ $$$${not}\:{correct}: \\ $$$${ax}^{\mathrm{2}} +{b}\left({x}+{d}\right){x}+{c}=\mathrm{0} \\ $$$${D}={b}^{\mathrm{2}} \left({x}+{d}\right)^{\mathrm{2}} −\mathrm{4}{ac} \\ $$

Commented by rahul 19 last updated on 18/Mar/18

Okay sir.

$$\boldsymbol{{O}}{kay}\:{sir}. \\ $$

Answered by mrW2 last updated on 16/Mar/18

let t=x^2 +x+1  (t+1)^2 −(a−3)t(t+1)+(a−4)t^2 =0  t^2 +2t+1−(a−3)t^2 −(a−3)t+(a−4)t^2 =0  (5−a)t+1=0  (5−a)(x^2 +x+1)+1=0  (5−a)x^2 +(5−a)x+(6−a)=0  a≠5  D=(5−a)^2 −4(5−a)(6−a)≥0  (5−a)(3a−19)≥0  ⇒5<a≤((19)/3)

$${let}\:{t}={x}^{\mathrm{2}} +{x}+\mathrm{1} \\ $$$$\left({t}+\mathrm{1}\right)^{\mathrm{2}} −\left({a}−\mathrm{3}\right){t}\left({t}+\mathrm{1}\right)+\left({a}−\mathrm{4}\right){t}^{\mathrm{2}} =\mathrm{0} \\ $$$${t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{1}−\left({a}−\mathrm{3}\right){t}^{\mathrm{2}} −\left({a}−\mathrm{3}\right){t}+\left({a}−\mathrm{4}\right){t}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left(\mathrm{5}−{a}\right){t}+\mathrm{1}=\mathrm{0} \\ $$$$\left(\mathrm{5}−{a}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)+\mathrm{1}=\mathrm{0} \\ $$$$\left(\mathrm{5}−{a}\right){x}^{\mathrm{2}} +\left(\mathrm{5}−{a}\right){x}+\left(\mathrm{6}−{a}\right)=\mathrm{0} \\ $$$${a}\neq\mathrm{5} \\ $$$${D}=\left(\mathrm{5}−{a}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{5}−{a}\right)\left(\mathrm{6}−{a}\right)\geqslant\mathrm{0} \\ $$$$\left(\mathrm{5}−{a}\right)\left(\mathrm{3}{a}−\mathrm{19}\right)\geqslant\mathrm{0} \\ $$$$\Rightarrow\mathrm{5}<{a}\leqslant\frac{\mathrm{19}}{\mathrm{3}} \\ $$

Commented by rahul 19 last updated on 18/Mar/18

thank u so much sir!

$${thank}\:{u}\:{so}\:{much}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com