All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 31967 by abdo imad last updated on 17/Mar/18
findthevalueof∫0∞arctanxx2+x+1dx.
Commented by abdo imad last updated on 19/Mar/18
letputI=∫0∞arctanxx2+x+1dx.ch.x=1tgiveI=∫0∞π2−arctant1t2+1t+1dtt2=∫0∞π2−arctant1+t+t2dt=π2∫0∞dtt2+t+1−I⇒2I=π2∫0∞dtt2+t+1⇒I=π4∫0∞dtt2+t+1.but∫0∞dtt2+t+1=∫0∞dt(t+12)2+34(.ch.t+12=32u)=∫13+∞134(t2+1)32du=4332∫13+∞du1+u2=233[arctan(u)]13∞=233(π2−arctan(13))=233arctan(3)=233π3=2π39⇒I=π42π39=π2318.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com