Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 31967 by abdo imad last updated on 17/Mar/18

find the value of  ∫_0 ^∞   ((arctanx)/(x^2  +x+1))dx .

findthevalueof0arctanxx2+x+1dx.

Commented by abdo imad last updated on 19/Mar/18

let put I =∫_0 ^∞   ((arctanx)/(x^2  +x+1))dx  .ch.x=(1/t)  give  I = ∫_0 ^∞      (((π/2) −arctant)/((1/t^2 ) +(1/t) +1)) (dt/t^2 ) = ∫_0 ^∞  (((π/2) −arctant)/(1+t +t^2 )) dt  =(π/2) ∫_0 ^∞   (dt/(t^(2 )  +t +1)) −I ⇒ 2I= (π/2) ∫_0 ^∞   (dt/(t^2  +t+1)) ⇒  I =(π/4) ∫_0 ^∞   (dt/(t^2  +t +1))  .but  ∫_0 ^∞     (dt/(t^2  +t +1)) = ∫_0 ^∞    (dt/((t+(1/2))^2  +(3/4)))(  .ch.t+(1/2) =((√3)/2) u)  =  ∫_(1/(√3)) ^(+∞)      (1/((3/4)(t^(2 )  +1))) ((√3)/2) du = (4/3) ((√3)/2)  ∫_(1/(√3)) ^(+∞)    (du/(1+u^2 ))  =((2(√3))/3) [arctan(u)]_((1/(√3)) ) ^∞  =((2(√3))/3) ( (π/2) −arctan((1/(√3))))  =((2(√3))/3) arctan((√3))=((2(√3))/3) (π/3) =((2π(√3))/9) ⇒  I =(π/4) ((2π(√3))/9) = ((π^2  (√3))/(18)) .

letputI=0arctanxx2+x+1dx.ch.x=1tgiveI=0π2arctant1t2+1t+1dtt2=0π2arctant1+t+t2dt=π20dtt2+t+1I2I=π20dtt2+t+1I=π40dtt2+t+1.but0dtt2+t+1=0dt(t+12)2+34(.ch.t+12=32u)=13+134(t2+1)32du=433213+du1+u2=233[arctan(u)]13=233(π2arctan(13))=233arctan(3)=233π3=2π39I=π42π39=π2318.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com