Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 31977 by abdo imad last updated on 17/Mar/18

find the value of  Σ_(n=0) ^∞    (1/((2n+1)(2n+3)))

$${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)} \\ $$

Commented by Tinkutara last updated on 17/Mar/18

(1/2)

$$\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by abdo imad last updated on 18/Mar/18

let put S_n = Σ_(k=0) ^n   (1/((2k+1)(2k+3))) we have   S_n =(1/2) Σ_(k=0) ^n  ( (1/(2k+1)) −(1/(2k+3))) ⇒  2S_n = Σ_(k=0) ^n (a_k  −a_(k+1) )  with a_k =(1/(2k+1))  = a_0  −a_1  +a_1  −a_2  +....+a_n  −a_(n+1) =a_0  −a_(n+1) =1−(1/(2n+3))  ⇒ S_n =(1/2) −(1/(2(2n+3))) ⇒lim_(n→∞)  S_n =(1/2) .

$${let}\:{put}\:{S}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{3}\right)}\:{we}\:{have}\: \\ $$$${S}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\left(\:\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}\:−\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{3}}\right)\:\Rightarrow \\ $$$$\mathrm{2}{S}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \left({a}_{{k}} \:−{a}_{{k}+\mathrm{1}} \right)\:\:{with}\:{a}_{{k}} =\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}} \\ $$$$=\:{a}_{\mathrm{0}} \:−{a}_{\mathrm{1}} \:+{a}_{\mathrm{1}} \:−{a}_{\mathrm{2}} \:+....+{a}_{{n}} \:−{a}_{{n}+\mathrm{1}} ={a}_{\mathrm{0}} \:−{a}_{{n}+\mathrm{1}} =\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{3}} \\ $$$$\Rightarrow\:{S}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{2}{n}+\mathrm{3}\right)}\:\Rightarrow{lim}_{{n}\rightarrow\infty} \:{S}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\:. \\ $$$$ \\ $$

Answered by Joel578 last updated on 18/Mar/18

S_k  = Σ_(n=0) ^k  (1/((2n + 1)(2n + 3)))        = (1/2) Σ_(n=0) ^k  ((1/(2n + 1)) − (1/(2n + 3)))        = (1/2)[(1 − (1/3)) + ((1/3) − (1/5)) + ... + ((1/(2k + 1)) − (1/(2k + 3)))        = (1/2)(1 − (1/(2k + 3)))    lim_(k→∞)  S_k  = lim_(k→∞)  (1/2)(1 − (1/(2k + 3))) = (1/2)

$${S}_{{k}} \:=\:\underset{{n}=\mathrm{0}} {\overset{{k}} {\sum}}\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}\:+\:\mathrm{1}\right)\left(\mathrm{2}{n}\:+\:\mathrm{3}\right)} \\ $$$$\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\underset{{n}=\mathrm{0}} {\overset{{k}} {\sum}}\:\left(\frac{\mathrm{1}}{\mathrm{2}{n}\:+\:\mathrm{1}}\:−\:\frac{\mathrm{1}}{\mathrm{2}{n}\:+\:\mathrm{3}}\right) \\ $$$$\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left[\left(\mathrm{1}\:−\:\frac{\mathrm{1}}{\mathrm{3}}\right)\:+\:\left(\frac{\mathrm{1}}{\mathrm{3}}\:−\:\frac{\mathrm{1}}{\mathrm{5}}\right)\:+\:...\:+\:\left(\frac{\mathrm{1}}{\mathrm{2}{k}\:+\:\mathrm{1}}\:−\:\frac{\mathrm{1}}{\mathrm{2}{k}\:+\:\mathrm{3}}\right)\right. \\ $$$$\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}\:−\:\frac{\mathrm{1}}{\mathrm{2}{k}\:+\:\mathrm{3}}\right) \\ $$$$ \\ $$$$\underset{{k}\rightarrow\infty} {\mathrm{lim}}\:{S}_{{k}} \:=\:\underset{{k}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}\:−\:\frac{\mathrm{1}}{\mathrm{2}{k}\:+\:\mathrm{3}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com