Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32026 by abdo imad last updated on 18/Mar/18

let α>0 prove that  Σ_(n=0) ^∞   (((−1)^n )/(n+α)) =∫_0 ^1   (x^(α−1) /(1+x))dx .

$${let}\:\alpha>\mathrm{0}\:{prove}\:{that}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\alpha}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{\alpha−\mathrm{1}} }{\mathrm{1}+{x}}{dx}\:. \\ $$

Commented byabdo imad last updated on 22/Mar/18

∫_0 ^1   (x^(α−1) /(1+x))dx = ∫_0 ^1 (Σ_(n=0) ^∞ (−1)^n x^n )x^(α−1) dx  = Σ_(n=0) ^∞  (−1)^n  ∫_0 ^1  x^(n+α−1) dx  =Σ_(n=0) ^∞  (−1)^n  [ (1/(n+α)) x^(n+α) ]_0 ^1  =Σ_(n=0) ^∞   (((−1)^n )/(n+α)) .

$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{\alpha−\mathrm{1}} }{\mathrm{1}+{x}}{dx}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {x}^{{n}} \right){x}^{\alpha−\mathrm{1}} {dx} \\ $$ $$=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}+\alpha−\mathrm{1}} {dx} \\ $$ $$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:\left[\:\frac{\mathrm{1}}{{n}+\alpha}\:{x}^{{n}+\alpha} \right]_{\mathrm{0}} ^{\mathrm{1}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\alpha}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com