Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32031 by abdo imad last updated on 18/Mar/18

let  f(a) = ∫_0 ^∞   e^(−ax) ln(x)dx  with a>0  1) find f(a)   2)  find  ∫_0 ^∞   e^(−ax) (xlnx)dx  3) calculate  ∫_0 ^∞   e^(−2x) (xlnx)dx  .

letf(a)=0eaxln(x)dxwitha>0 1)findf(a) 2)find0eax(xlnx)dx 3)calculate0e2x(xlnx)dx.

Commented byabdo imad last updated on 20/Mar/18

ch. ax =t give f(a) =∫_0 ^∞  e^(−t) ln ((t/a))(dt/a)  =(1/a) ∫_0 ^∞  e^(−t) (ln(t) −ln(a))dt   = (1/a)∫_0 ^∞  e^(−t) ln(t)dt −((ln(a))/a) ∫_0 ^∞  e^(−t)  dt but we have proved  that ∫_0 ^∞  e^(−t) ln(t)dt =−γ  ⇒ f(a) =−(γ/a) −((ln(a))/a)  2) we have f^′ (a) = −∫_0 ^∞  x e^(−ax)  ln(x)dx ⇒  ∫_0 ^∞  e^(−ax)  (xln(x))dx = −f^′ (a)  from another side  f^′ (a) = (γ/a^2 )  − ((1 −ln(a))/a^2 ) = ((γ +ln(a) −1)/a^2 ) ⇒  ∫_0 ^∞   e^(−ax) (xlnx)dx= ((1−γ −ln(a))/a^2 )  3) from rel. 2) let take a=2 we get  ∫_0 ^∞   e^(−2x)  (xln(x))dx = ((1−γ −ln(2))/4)  .

ch.ax=tgivef(a)=0etln(ta)dta =1a0et(ln(t)ln(a))dt =1a0etln(t)dtln(a)a0etdtbutwehaveproved that0etln(t)dt=γf(a)=γaln(a)a 2)wehavef(a)=0xeaxln(x)dx 0eax(xln(x))dx=f(a)fromanotherside f(a)=γa21ln(a)a2=γ+ln(a)1a2 0eax(xlnx)dx=1γln(a)a2 3)fromrel.2)lettakea=2weget 0e2x(xln(x))dx=1γln(2)4.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com