Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 32041 by abdo imad last updated on 18/Mar/18

find the nature of Σ u_n   /  u_n = (((√1) +(√2) +....+(√n))/n^3 ) .

$${find}\:{the}\:{nature}\:{of}\:\Sigma\:{u}_{{n}} \:\:/ \\ $$$${u}_{{n}} =\:\frac{\sqrt{\mathrm{1}}\:+\sqrt{\mathrm{2}}\:+....+\sqrt{{n}}}{{n}^{\mathrm{3}} }\:. \\ $$

Commented by abdo imad last updated on 20/Mar/18

we have u_n = (1/n^2 ) ( (1/(√n)) Σ_(k=1) ^n  (√( (k/n))) )  =(1/(n(√n)))( (1/n) Σ_(k=1) ^n  (√(k/n)) ) but lim_(n→∞) (1/n) Σ_(k=1) ^n  (√(k/n))  = ∫_0 ^1  (√x) dx = [ (2/3) x^(3/2)  ]_0 ^1  = (2/3)  ⇒  u_n  ∼  (2/(3n(√n)))  and  the serie  Σ_(n≥1)      (2/(3n(√n))) is convergent so Σ u_(n ) converges.

$${we}\:{have}\:{u}_{{n}} =\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\left(\:\frac{\mathrm{1}}{\sqrt{{n}}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\sqrt{\:\frac{{k}}{{n}}}\:\right) \\ $$$$=\frac{\mathrm{1}}{{n}\sqrt{{n}}}\left(\:\frac{\mathrm{1}}{{n}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\sqrt{\frac{{k}}{{n}}}\:\right)\:{but}\:{lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}}{{n}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\sqrt{\frac{{k}}{{n}}} \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\sqrt{{x}}\:{dx}\:=\:\left[\:\frac{\mathrm{2}}{\mathrm{3}}\:{x}^{\frac{\mathrm{3}}{\mathrm{2}}} \:\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\:\frac{\mathrm{2}}{\mathrm{3}}\:\:\Rightarrow\:\:{u}_{{n}} \:\sim\:\:\frac{\mathrm{2}}{\mathrm{3}{n}\sqrt{{n}}}\:\:{and} \\ $$$${the}\:{serie}\:\:\sum_{{n}\geqslant\mathrm{1}} \:\:\:\:\:\frac{\mathrm{2}}{\mathrm{3}{n}\sqrt{{n}}}\:{is}\:{convergent}\:{so}\:\Sigma\:{u}_{{n}\:} {converges}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com