Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 32042 by abdo imad last updated on 18/Mar/18

let u_n   =∫_0 ^1   x^n  sin(πx)dx  1) prove that Σ u_n  converges  2) prove that Σ u_n = ∫_0 ^π   ((sint)/t)dt .

$${let}\:{u}_{{n}} \:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{{n}} \:{sin}\left(\pi{x}\right){dx} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\Sigma\:{u}_{{n}} \:{converges} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\Sigma\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sint}}{{t}}{dt}\:. \\ $$

Commented by abdo imad last updated on 20/Mar/18

let put S_n =Σ_(k=0) ^n  ∫_0 ^1  x^k  sin(πx)dx  S_n = ∫_0 ^1 (Σ_(k=0) ^n  x^k )sin(πx)dx =∫_0 ^1  ((1−x^(n+1) )/(1−x)) sin(πx)dx  ⇒ S_(n )  − ∫_0 ^1   ((sin(πx))/(1−x))dx = −∫_0 ^1   (x^(n+1) /(1−x)) sin(πx)dx and ∃m>0/  ∣ S_n  − ∫_0 ^1   ((sin(πx))/(1−x))dx∣  ≤ m ∫_0 ^1  x^(n+1) dx =(m/(n+2)) →_(n→∞) 0  ⇒ S_n converged and lim S_n  = ∫_0 ^1   ((sin(πx))/(1−x)) dx  2) ch .1−x=t give ∫_0 ^1   ((sin(πx))/(1−x)) dx =∫_0 ^1   ((sin(π(1−t)))/t)= dt  = ∫_0 ^1   ((sin(πt))/t) dt after ch. πt =u give  lim _(n→∞)  S_n =  ∫_0 ^π   ((sin(u))/(u/π)) (du/π) =∫_0 ^π    ((sinu)/u) du . so  Σ_(n=0) ^∞  u_n = ∫_0 ^π   ((sinu)/u) du  .

$${let}\:{put}\:{S}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{k}} \:{sin}\left(\pi{x}\right){dx} \\ $$$${S}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\sum_{{k}=\mathrm{0}} ^{{n}} \:{x}^{{k}} \right){sin}\left(\pi{x}\right){dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}−{x}^{{n}+\mathrm{1}} }{\mathrm{1}−{x}}\:{sin}\left(\pi{x}\right){dx} \\ $$$$\Rightarrow\:{S}_{{n}\:} \:−\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left(\pi{x}\right)}{\mathrm{1}−{x}}{dx}\:=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{{n}+\mathrm{1}} }{\mathrm{1}−{x}}\:{sin}\left(\pi{x}\right){dx}\:{and}\:\exists{m}>\mathrm{0}/ \\ $$$$\mid\:{S}_{{n}} \:−\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left(\pi{x}\right)}{\mathrm{1}−{x}}{dx}\mid\:\:\leqslant\:{m}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}+\mathrm{1}} {dx}\:=\frac{{m}}{{n}+\mathrm{2}}\:\rightarrow_{{n}\rightarrow\infty} \mathrm{0} \\ $$$$\Rightarrow\:{S}_{{n}} {converged}\:{and}\:{lim}\:{S}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left(\pi{x}\right)}{\mathrm{1}−{x}}\:{dx} \\ $$$$\left.\mathrm{2}\right)\:{ch}\:.\mathrm{1}−{x}={t}\:{give}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left(\pi{x}\right)}{\mathrm{1}−{x}}\:{dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left(\pi\left(\mathrm{1}−{t}\right)\right)}{{t}}=\:{dt} \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left(\pi{t}\right)}{{t}}\:{dt}\:{after}\:{ch}.\:\pi{t}\:={u}\:{give} \\ $$$${lim}\:_{{n}\rightarrow\infty} \:{S}_{{n}} =\:\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sin}\left({u}\right)}{\frac{{u}}{\pi}}\:\frac{{du}}{\pi}\:=\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{sinu}}{{u}}\:{du}\:.\:{so} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sinu}}{{u}}\:{du}\:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com