Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 32098 by Tinkutara last updated on 19/Mar/18

Commented by ajfour last updated on 19/Mar/18

((3L)/4)  .

$$\frac{\mathrm{3}{L}}{\mathrm{4}}\:\:. \\ $$

Commented by Tinkutara last updated on 19/Mar/18

Yes correct. Did you use torque balancing or COM concept?

Commented by ajfour last updated on 19/Mar/18

com concept.

$${com}\:{concept}. \\ $$

Commented by mrW2 last updated on 19/Mar/18

what is x_(max)  if you can take as many  blocks as you like?

$${what}\:{is}\:{x}_{{max}} \:{if}\:{you}\:{can}\:{take}\:{as}\:{many} \\ $$$${blocks}\:{as}\:{you}\:{like}? \\ $$

Commented by mrW2 last updated on 20/Mar/18

Commented by mrW2 last updated on 20/Mar/18

x_n =(L/2)(1+(1/2)+(1/3)+...+(1/n))  lim_(n→∞) x_n =∞  it means with sufficient blocks one  can reach every overhang.

$${x}_{{n}} =\frac{{L}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+...+\frac{\mathrm{1}}{{n}}\right) \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{x}_{{n}} =\infty \\ $$$${it}\:{means}\:{with}\:{sufficient}\:{blocks}\:{one} \\ $$$${can}\:{reach}\:{every}\:{overhang}. \\ $$

Commented by Tinkutara last updated on 20/Mar/18

@ajfour Sir please show COM concept. I can't solve by that method.

Commented by Tinkutara last updated on 20/Mar/18

@mrW2 Sir how  lim_(n→∞) x_n =∞  ?

$$@{mrW}\mathrm{2}\:{Sir}\:{how} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{x}_{{n}} =\infty \\ $$$$? \\ $$

Commented by mrW2 last updated on 20/Mar/18

the harminic series is divergent.  x_(n+1) >x_n   ⇒lim_(n→∞) x_n =∞    proof:  assume it converges, i.e.  S=1+(1/2)+(1/3)+(1/4)+(1/5)+(1/6)....  S>1+(1/2)+(1/4)+(1/4)+(1/6)+(1/6)....  =(1/2)+(1/2)+(1/2)+(1/4)+(1/4)+(1/6)+(1/6)....  =(1/2)+(1+(1/2)+(1/3)+(1/4)+....)  ⇒S>(1/2)+S  this is contradiction.

$${the}\:{harminic}\:{series}\:{is}\:{divergent}. \\ $$$${x}_{{n}+\mathrm{1}} >{x}_{{n}} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}{x}_{{n}} =\infty \\ $$$$ \\ $$$${proof}: \\ $$$${assume}\:{it}\:{converges},\:{i}.{e}. \\ $$$${S}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{6}}.... \\ $$$${S}>\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{6}}.... \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{6}}.... \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}+\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+....\right) \\ $$$$\Rightarrow{S}>\frac{\mathrm{1}}{\mathrm{2}}+{S} \\ $$$${this}\:{is}\:{contradiction}. \\ $$

Commented by Tinkutara last updated on 20/Mar/18

Thank you very much Sir! ��������

Commented by abdo imad last updated on 20/Mar/18

let put H_n =Σ_(k=1) ^n (1/k) and prove that lim_(n→∞)  H_n =+∞  we have H_n =1+Σ_(k=2) ^n  ∫_(k−1) ^k  (dt/k) but  k−1 ≤t ≤k ⇒   (1/k)≤ (1/t) ≤ (1/(k−1))  ⇒  (1/k) ≤ ∫_(k−1) ^k  (dt/t) ≤ (1/(k−1)) ⇒  Σ_(k=2) ^n  (1/k) ≤ Σ_(k=2) ^n  ∫_(k−1) ^k (dt/t) ≤ Σ_(k=2) ^n  (1/(k−1)) ⇒  1+Σ_(k=2) ^n  (1/k) ≤ 1+Σ_(k=2) ^n  (ln(k)−ln(k−1))≤1+ Σ_(k=1) ^(n−1)  (1/k) ⇒  H_n  ≤ 1+ln(n) ≤ 1+H_(n−1)   ⇒H_(n−1)  ≥ ln(n) ⇒  H_n  ≥ ln(n+1) ∀ n∈ N^★   but lim_(n→∞) ln(n+1) =+∞ ⇒  lim_(n→+∞)  =+∞ . also we have the relation  H_n  −1 ≤ ln(n) ≤ H_(n−1)   for n≥2 .

$${let}\:{put}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \frac{\mathrm{1}}{{k}}\:{and}\:{prove}\:{that}\:{lim}_{{n}\rightarrow\infty} \:{H}_{{n}} =+\infty \\ $$$${we}\:{have}\:{H}_{{n}} =\mathrm{1}+\sum_{{k}=\mathrm{2}} ^{{n}} \:\int_{{k}−\mathrm{1}} ^{{k}} \:\frac{{dt}}{{k}}\:{but}\:\:{k}−\mathrm{1}\:\leqslant{t}\:\leqslant{k}\:\Rightarrow \\ $$$$\:\frac{\mathrm{1}}{{k}}\leqslant\:\frac{\mathrm{1}}{{t}}\:\leqslant\:\frac{\mathrm{1}}{{k}−\mathrm{1}}\:\:\Rightarrow\:\:\frac{\mathrm{1}}{{k}}\:\leqslant\:\int_{{k}−\mathrm{1}} ^{{k}} \:\frac{{dt}}{{t}}\:\leqslant\:\frac{\mathrm{1}}{{k}−\mathrm{1}}\:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{2}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:\leqslant\:\sum_{{k}=\mathrm{2}} ^{{n}} \:\int_{{k}−\mathrm{1}} ^{{k}} \frac{{dt}}{{t}}\:\leqslant\:\sum_{{k}=\mathrm{2}} ^{{n}} \:\frac{\mathrm{1}}{{k}−\mathrm{1}}\:\Rightarrow \\ $$$$\mathrm{1}+\sum_{{k}=\mathrm{2}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:\leqslant\:\mathrm{1}+\sum_{{k}=\mathrm{2}} ^{{n}} \:\left({ln}\left({k}\right)−{ln}\left({k}−\mathrm{1}\right)\right)\leqslant\mathrm{1}+\:\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\frac{\mathrm{1}}{{k}}\:\Rightarrow \\ $$$${H}_{{n}} \:\leqslant\:\mathrm{1}+{ln}\left({n}\right)\:\leqslant\:\mathrm{1}+{H}_{{n}−\mathrm{1}} \:\:\Rightarrow{H}_{{n}−\mathrm{1}} \:\geqslant\:{ln}\left({n}\right)\:\Rightarrow \\ $$$${H}_{{n}} \:\geqslant\:{ln}\left({n}+\mathrm{1}\right)\:\forall\:{n}\in\:{N}^{\bigstar} \:\:{but}\:{lim}_{{n}\rightarrow\infty} {ln}\left({n}+\mathrm{1}\right)\:=+\infty\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:=+\infty\:.\:{also}\:{we}\:{have}\:{the}\:{relation} \\ $$$${H}_{{n}} \:−\mathrm{1}\:\leqslant\:{ln}\left({n}\right)\:\leqslant\:{H}_{{n}−\mathrm{1}} \:\:{for}\:{n}\geqslant\mathrm{2}\:. \\ $$

Commented by Tinkutara last updated on 21/Mar/18

Thank you abdo imad Sir!

Commented by abdo imad last updated on 21/Mar/18

nevermind sir

$${nevermind}\:{sir} \\ $$

Commented by mrW2 last updated on 22/Mar/18

thanks!  nice to know:  ln (n+1)<H_n <ln (n)+1

$${thanks}! \\ $$$${nice}\:{to}\:{know}: \\ $$$$\mathrm{ln}\:\left({n}+\mathrm{1}\right)<{H}_{{n}} <\mathrm{ln}\:\left({n}\right)+\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com