Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 3215 by prakash jain last updated on 07/Dec/15

Prove that ratio of circles perimeter to  its radius is constant.  Proof should not utilize a result based  on the above fact.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{circles}\:\mathrm{perimeter}\:\mathrm{to} \\ $$$$\mathrm{its}\:\mathrm{radius}\:\mathrm{is}\:\mathrm{constant}. \\ $$$$\mathrm{Proof}\:\mathrm{should}\:\mathrm{not}\:\mathrm{utilize}\:\mathrm{a}\:\mathrm{result}\:\mathrm{based} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{above}\:\mathrm{fact}. \\ $$

Answered by Yozzi last updated on 07/Dec/15

Define the curve y=(√(r^2 −x^2 ))  for 0≤x≤r (r∈R). Graphically, this   represents one quarter of a circle  of radius r with centre (0,0). The  form of this equation stems from   Phythagoras′ Theorem and the  definition of the locus of points creating  a circle. We have (dy/dx)=((−2x×0.5)/(√(r^2 −x^2 )))  (dy/dx)=((−x)/(√(r^2 −x^2 )))⇒((dy/dx))^2 =(x^2 /(r^2 −x^2 ))  ∴1+((dy/dx))^2 =((r^2 −x^2 +x^2 )/(r^2 −x^2 ))=(r^2 /(r^2 −x^2 )).  The differential form for arc length s  of a curve y dependent on x is given by                      (ds/dx)=(√(1+((dy/dx))^2 )).    (∗)  This form also stems from   Phythagoras′ Theorem.   Think about a curve with a chord  of length δs joining two points on  a curve with vertical change δy and  horizontal change δx. Then, we may  form a right−angled triangle   such that (δs)^2 =(δx)^2 +(δy)^2 .  ∴(((δs)/(δx)))^2 =1+(((δy)/(δx)))^2   As δx→0 we obtain the differential  equation ((ds/dx))^2 =1+((dy/dx))^2 .  Taking (ds/dx)>0 we obtain (∗).  Integrating (∗), for 0≤x≤r, leads to   s=∫_0 ^r (√(1+((dy/dx))^2 ))dx  s=∫_0 ^r (√(r^2 /(r^2 −x^2 )))dx  s=∫_0 ^r (r/(√(r^2 −x^2 )))dx     (r>0)  s=r[sin^(−1) (x/r)]_0 ^r   s=r[sin^(−1) 1−sin^(−1) 0]=rsin^(−1) 1  sin^(−1) 1 is a real constant since  ∣sinx∣≤1 ∀x∈R so that sin^(−1) 1∈R.  So, the entire circle perimeter P is  given by P=4s=4rsin^(−1) 1.  So, (P/r)=4sin^(−1) 1=constant.

$${Define}\:{the}\:{curve}\:{y}=\sqrt{\boldsymbol{{r}}^{\mathrm{2}} −{x}^{\mathrm{2}} } \\ $$$${for}\:\mathrm{0}\leqslant{x}\leqslant\boldsymbol{{r}}\:\left(\boldsymbol{{r}}\in\mathbb{R}\right).\:{Graphically},\:{this}\: \\ $$$${represents}\:{one}\:{quarter}\:{of}\:{a}\:{circle} \\ $$$${of}\:{radius}\:\boldsymbol{{r}}\:{with}\:{centre}\:\left(\mathrm{0},\mathrm{0}\right).\:{The} \\ $$$${form}\:{of}\:{this}\:{equation}\:{stems}\:{from}\: \\ $$$${Phythagoras}'\:{Theorem}\:{and}\:{the} \\ $$$${definition}\:{of}\:{the}\:{locus}\:{of}\:{points}\:{creating} \\ $$$${a}\:{circle}.\:{We}\:{have}\:\frac{{dy}}{{dx}}=\frac{−\mathrm{2}{x}×\mathrm{0}.\mathrm{5}}{\sqrt{\boldsymbol{{r}}^{\mathrm{2}} −{x}^{\mathrm{2}} }} \\ $$$$\frac{{dy}}{{dx}}=\frac{−{x}}{\sqrt{\boldsymbol{{r}}^{\mathrm{2}} −{x}^{\mathrm{2}} }}\Rightarrow\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} =\frac{{x}^{\mathrm{2}} }{\boldsymbol{{r}}^{\mathrm{2}} −{x}^{\mathrm{2}} } \\ $$$$\therefore\mathrm{1}+\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} =\frac{\boldsymbol{{r}}^{\mathrm{2}} −{x}^{\mathrm{2}} +{x}^{\mathrm{2}} }{\boldsymbol{{r}}^{\mathrm{2}} −{x}^{\mathrm{2}} }=\frac{\boldsymbol{{r}}^{\mathrm{2}} }{\boldsymbol{{r}}^{\mathrm{2}} −{x}^{\mathrm{2}} }. \\ $$$${The}\:{differential}\:{form}\:{for}\:{arc}\:{length}\:{s} \\ $$$${of}\:{a}\:{curve}\:{y}\:{dependent}\:{on}\:{x}\:{is}\:{given}\:{by} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{ds}}{{dx}}=\sqrt{\mathrm{1}+\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} }.\:\:\:\:\left(\ast\right) \\ $$$${This}\:{form}\:{also}\:{stems}\:{from}\: \\ $$$${Phythagoras}'\:{Theorem}.\: \\ $$$${Think}\:{about}\:{a}\:{curve}\:{with}\:{a}\:{chord} \\ $$$${of}\:{length}\:\delta{s}\:{joining}\:{two}\:{points}\:{on} \\ $$$${a}\:{curve}\:{with}\:{vertical}\:{change}\:\delta{y}\:{and} \\ $$$${horizontal}\:{change}\:\delta{x}.\:{Then},\:{we}\:{may} \\ $$$${form}\:{a}\:{right}−{angled}\:{triangle}\: \\ $$$${such}\:{that}\:\left(\delta{s}\right)^{\mathrm{2}} =\left(\delta{x}\right)^{\mathrm{2}} +\left(\delta{y}\right)^{\mathrm{2}} . \\ $$$$\therefore\left(\frac{\delta{s}}{\delta{x}}\right)^{\mathrm{2}} =\mathrm{1}+\left(\frac{\delta{y}}{\delta{x}}\right)^{\mathrm{2}} \\ $$$${As}\:\delta{x}\rightarrow\mathrm{0}\:{we}\:{obtain}\:{the}\:{differential} \\ $$$${equation}\:\left(\frac{{ds}}{{dx}}\right)^{\mathrm{2}} =\mathrm{1}+\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} . \\ $$$${Taking}\:\frac{{ds}}{{dx}}>\mathrm{0}\:{we}\:{obtain}\:\left(\ast\right). \\ $$$${Integrating}\:\left(\ast\right),\:{for}\:\mathrm{0}\leqslant{x}\leqslant\boldsymbol{{r}},\:{leads}\:{to}\: \\ $$$${s}=\int_{\mathrm{0}} ^{\boldsymbol{{r}}} \sqrt{\mathrm{1}+\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} }{dx} \\ $$$${s}=\int_{\mathrm{0}} ^{\boldsymbol{{r}}} \sqrt{\frac{\boldsymbol{{r}}^{\mathrm{2}} }{\boldsymbol{{r}}^{\mathrm{2}} −{x}^{\mathrm{2}} }}{dx} \\ $$$${s}=\int_{\mathrm{0}} ^{\boldsymbol{{r}}} \frac{\boldsymbol{{r}}}{\sqrt{\boldsymbol{{r}}^{\mathrm{2}} −{x}^{\mathrm{2}} }}{dx}\:\:\:\:\:\left(\boldsymbol{{r}}>\mathrm{0}\right) \\ $$$${s}=\boldsymbol{{r}}\left[{sin}^{−\mathrm{1}} \frac{{x}}{\boldsymbol{{r}}}\right]_{\mathrm{0}} ^{\boldsymbol{{r}}} \\ $$$${s}=\boldsymbol{{r}}\left[{sin}^{−\mathrm{1}} \mathrm{1}−{sin}^{−\mathrm{1}} \mathrm{0}\right]=\boldsymbol{{r}}{sin}^{−\mathrm{1}} \mathrm{1} \\ $$$${sin}^{−\mathrm{1}} \mathrm{1}\:{is}\:{a}\:{real}\:{constant}\:{since} \\ $$$$\mid{sinx}\mid\leqslant\mathrm{1}\:\forall{x}\in\mathbb{R}\:{so}\:{that}\:{sin}^{−\mathrm{1}} \mathrm{1}\in\mathbb{R}. \\ $$$${So},\:{the}\:{entire}\:{circle}\:{perimeter}\:{P}\:{is} \\ $$$${given}\:{by}\:{P}=\mathrm{4}{s}=\mathrm{4}\boldsymbol{{r}}{sin}^{−\mathrm{1}} \mathrm{1}. \\ $$$${So},\:\frac{{P}}{\boldsymbol{{r}}}=\mathrm{4}{sin}^{−\mathrm{1}} \mathrm{1}={constant}. \\ $$

Commented by prakash jain last updated on 07/Dec/15

Great.

$$\mathrm{Great}. \\ $$

Commented by Rasheed Soomro last updated on 08/Dec/15

EXCELlent! Also like your explanation!

$$\mathcal{EXCEL}{lent}!\:\mathcal{A}{lso}\:{like}\:{your}\:{explanation}! \\ $$

Commented by 123456 last updated on 08/Dec/15

good explanation

$$\mathrm{good}\:\mathrm{explanation} \\ $$

Answered by 123456 last updated on 08/Dec/15

other way (???)  lets l:={(x,y)∈R^2 ,x^2 +y^2 =r^2 }  and take the line integral over l with  f(x,y)=1  integrating f in l give the lenght  P=∫_l f(x,y)dl  we have that (Δl)^2 =(Δx)^2 +(Δy)^2 , taking  Δx→0,Δy→0 gives  dl=(√((dx)^2 +(dy)^2 )) (diferencial element of line)  we can give l as  x=r cos t  y=r sin t  0≤t<2π  note that its give the circle since  x^2 +y^2 =r^2   so  dl=(√((dx)^2 +(dy)^2 ))  =(√((dt)^2 [((dx/dt))^2 +((dy/dt))^2 ]))  =(√(((dx/dt))^2 +((dy/dt))^2 ))dt  so  P=∫_0 ^(2π) (√(((d/dt)rcos t)^2 +((d/dt)rsin t)^2 ))dt  =r∫_0 ^(2π) (√(sin^2 t+cos^2 t))dt  =r∫_0 ^(2π) dt  =2πr  (P/r)=2π=const  (multivariable calculus version of above  proof)

$$\mathrm{other}\:\mathrm{way}\:\left(???\right) \\ $$$$\mathrm{lets}\:{l}:=\left\{\left({x},{y}\right)\in\mathbb{R}^{\mathrm{2}} ,{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={r}^{\mathrm{2}} \right\} \\ $$$$\mathrm{and}\:\mathrm{take}\:\mathrm{the}\:\mathrm{line}\:\mathrm{integral}\:\mathrm{over}\:{l}\:\mathrm{with} \\ $$$${f}\left({x},{y}\right)=\mathrm{1} \\ $$$$\mathrm{integrating}\:{f}\:\mathrm{in}\:{l}\:\mathrm{give}\:\mathrm{the}\:\mathrm{lenght} \\ $$$$\mathrm{P}=\underset{{l}} {\int}{f}\left({x},{y}\right){dl} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{that}\:\left(\Delta{l}\right)^{\mathrm{2}} =\left(\Delta{x}\right)^{\mathrm{2}} +\left(\Delta{y}\right)^{\mathrm{2}} ,\:\mathrm{taking} \\ $$$$\Delta{x}\rightarrow\mathrm{0},\Delta{y}\rightarrow\mathrm{0}\:\mathrm{gives} \\ $$$${dl}=\sqrt{\left({dx}\right)^{\mathrm{2}} +\left({dy}\right)^{\mathrm{2}} }\:\left(\mathrm{diferencial}\:\mathrm{element}\:\mathrm{of}\:\mathrm{line}\right) \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{give}\:{l}\:\mathrm{as} \\ $$$${x}={r}\:\mathrm{cos}\:{t} \\ $$$${y}={r}\:\mathrm{sin}\:{t} \\ $$$$\mathrm{0}\leqslant{t}<\mathrm{2}\pi \\ $$$$\mathrm{note}\:\mathrm{that}\:\mathrm{its}\:\mathrm{give}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{since} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\mathrm{so} \\ $$$${dl}=\sqrt{\left({dx}\right)^{\mathrm{2}} +\left({dy}\right)^{\mathrm{2}} } \\ $$$$=\sqrt{\left({dt}\right)^{\mathrm{2}} \left[\left(\frac{{dx}}{{dt}}\right)^{\mathrm{2}} +\left(\frac{{dy}}{{dt}}\right)^{\mathrm{2}} \right]} \\ $$$$=\sqrt{\left(\frac{{dx}}{{dt}}\right)^{\mathrm{2}} +\left(\frac{{dy}}{{dt}}\right)^{\mathrm{2}} }{dt} \\ $$$$\mathrm{so} \\ $$$$\mathrm{P}=\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\sqrt{\left(\frac{{d}}{{dt}}{r}\mathrm{cos}\:{t}\right)^{\mathrm{2}} +\left(\frac{{d}}{{dt}}{r}\mathrm{sin}\:{t}\right)^{\mathrm{2}} }{dt} \\ $$$$={r}\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\sqrt{\mathrm{sin}^{\mathrm{2}} {t}+\mathrm{cos}^{\mathrm{2}} {t}}{dt} \\ $$$$={r}\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}{dt} \\ $$$$=\mathrm{2}\pi{r} \\ $$$$\frac{\mathrm{P}}{{r}}=\mathrm{2}\pi=\mathrm{const} \\ $$$$\left(\mathrm{multivariable}\:\mathrm{calculus}\:\mathrm{version}\:\mathrm{of}\:\mathrm{above}\right. \\ $$$$\left.\mathrm{proof}\right) \\ $$

Commented by prakash jain last updated on 08/Dec/15

I think angle going from 0 to 2π is dependent  on the definition of angle as radians.  Which also implies perimeter=2πr.  Am i correct?

$$\mathrm{I}\:\mathrm{think}\:\mathrm{angle}\:\mathrm{going}\:\mathrm{from}\:\mathrm{0}\:\mathrm{to}\:\mathrm{2}\pi\:\mathrm{is}\:\mathrm{dependent} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{definition}\:\mathrm{of}\:\mathrm{angle}\:\mathrm{as}\:\mathrm{radians}. \\ $$$$\mathrm{Which}\:\mathrm{also}\:\mathrm{implies}\:\mathrm{perimeter}=\mathrm{2}\pi{r}. \\ $$$$\mathrm{Am}\:\mathrm{i}\:\mathrm{correct}? \\ $$

Commented by 123456 last updated on 08/Dec/15

hehehe, you got me.  s is lenght of arc sector  radians → θ=(s/r)  degree → 1°=(1/(360)) of a circle  grade → 1 gon=(1/(400)) of a circle  2π=360°=400 gon

$$\mathrm{hehehe},\:\mathrm{you}\:\mathrm{got}\:\mathrm{me}. \\ $$$$\mathrm{s}\:\mathrm{is}\:\mathrm{lenght}\:\mathrm{of}\:\mathrm{arc}\:\mathrm{sector} \\ $$$$\mathrm{radians}\:\rightarrow\:\theta=\frac{{s}}{{r}} \\ $$$$\mathrm{degree}\:\rightarrow\:\mathrm{1}°=\frac{\mathrm{1}}{\mathrm{360}}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle} \\ $$$$\mathrm{grade}\:\rightarrow\:\mathrm{1}\:\mathrm{gon}=\frac{\mathrm{1}}{\mathrm{400}}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle} \\ $$$$\mathrm{2}\pi=\mathrm{360}°=\mathrm{400}\:\mathrm{gon} \\ $$

Commented by Yozzi last updated on 08/Dec/15

That is why I hadn′t evalauted sin^(−1) 1  in my proof. π/2 would have appeared  and I think π traditionally stems   from the definition of circumference  as stating that the ratio between the  circumference and diameter of a  circle is a constant denoted by π.  I thought that I needed to explain  the origin of every result I used.

$${That}\:{is}\:{why}\:{I}\:{hadn}'{t}\:{evalauted}\:{sin}^{−\mathrm{1}} \mathrm{1} \\ $$$${in}\:{my}\:{proof}.\:\pi/\mathrm{2}\:{would}\:{have}\:{appeared} \\ $$$${and}\:{I}\:{think}\:\pi\:{traditionally}\:{stems}\: \\ $$$${from}\:{the}\:{definition}\:{of}\:{circumference} \\ $$$${as}\:{stating}\:{that}\:{the}\:{ratio}\:{between}\:{the} \\ $$$${circumference}\:{and}\:{diameter}\:{of}\:{a} \\ $$$${circle}\:{is}\:{a}\:{constant}\:{denoted}\:{by}\:\pi. \\ $$$${I}\:{thought}\:{that}\:{I}\:{needed}\:{to}\:{explain} \\ $$$${the}\:{origin}\:{of}\:{every}\:{result}\:{I}\:{used}. \\ $$

Commented by prakash jain last updated on 08/Dec/15

Once you got to sin^(−1) 1. The proof of the fact  the ratio is constant is complete. Evaluating sin^(−1) 1   after that point keeps the proof still valid.

$$\mathrm{Once}\:\mathrm{you}\:\mathrm{got}\:\mathrm{to}\:\mathrm{sin}^{−\mathrm{1}} \mathrm{1}.\:\mathrm{The}\:\mathrm{proof}\:\mathrm{of}\:\mathrm{the}\:\mathrm{fact} \\ $$$$\mathrm{the}\:\mathrm{ratio}\:\mathrm{is}\:\mathrm{constant}\:\mathrm{is}\:\mathrm{complete}.\:\mathrm{Evaluating}\:\mathrm{sin}^{−\mathrm{1}} \mathrm{1}\: \\ $$$$\mathrm{after}\:\mathrm{that}\:\mathrm{point}\:\mathrm{keeps}\:\mathrm{the}\:\mathrm{proof}\:\mathrm{still}\:\mathrm{valid}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com