Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 32156 by jarjum last updated on 20/Mar/18

evaluate∫((√(cos 2x))/(sin x))dx

$${evaluate}\int\frac{\sqrt{{cos}\:\mathrm{2}{x}}}{{sin}\:{x}}{dx} \\ $$

Commented by abdo imad last updated on 20/Mar/18

I = ∫ (√((cos(2x))/(sin^2 x))) dx =∫ (√((cos(2x))/((1−cos(2x))/2))) dx  =∫  (√(   ((2cos(2x))/(1−cos(2x))))) dx  ch. tanx=t give  I = ∫(√(  ((2((1−t^2 )/(1+t^2 )))/(1−((1−t^2 )/(1+t^2 ))))))  (dt/(1+t^2 ))  = ∫ (√( ((2(1−t^2 ))/(2t^2 )))) (dt/(1+t^2 ))  = ∫(√( (1/t^2 ) −1)) (dt/(1+t^2 ))  ch. (1/t)=u give  I = ∫(√(u^2 −1))  (1/(1+(1/u^2 ))) ((−du)/u^2 ) = −∫  ((√(u^2  −1))/(1+u^2 ))  du ch.u=ch(α)  I =−∫    ((sh(α))/(1+ch^2 (α))) sh(α)dα ⇒−I= ∫  ((sh^2 (α))/(1+ch^2 (α))) dα  = ∫   (((1−ch(2α))/2)/((1+ ((1+ch(2α))/2))/)) dα = ∫   ((1−ch(2α))/(3 +ch(2α))) dα  = ∫  ((1−((e^(2α)  +e^(−2α) )/2))/(3 + ((e^(2α)  +e^(−2α) )/2))) dα = ∫   ((2 −e^(2α)  −e^(−2α) )/(6 + e^(2α)  +e^(−2α) )) dα  ch.  e^(2α)  =x ⇒α=(1/2)ln(x) ⇒  −I =  ∫  ((2 −x −(1/x))/(6 +x +(1/x))) (dx/(2x)) = ∫    ((2x−x^2  −1)/(x(12x +2x^2  +2))) dx  ⇒ I = ∫   ((x^2  −2x +1)/(2x(x^2  +6x +1))) dx  this integral is calculable  after decomposition of the fraction....be continued...

$${I}\:=\:\int\:\sqrt{\frac{{cos}\left(\mathrm{2}{x}\right)}{{sin}^{\mathrm{2}} {x}}}\:{dx}\:=\int\:\sqrt{\frac{{cos}\left(\mathrm{2}{x}\right)}{\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}}}\:{dx} \\ $$$$=\int\:\:\sqrt{\:\:\:\frac{\mathrm{2}{cos}\left(\mathrm{2}{x}\right)}{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}}\:{dx}\:\:{ch}.\:{tanx}={t}\:{give} \\ $$$${I}\:=\:\int\sqrt{\:\:\frac{\mathrm{2}\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}{\mathrm{1}−\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}}\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\:=\:\int\:\sqrt{\:\frac{\mathrm{2}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)}{\mathrm{2}{t}^{\mathrm{2}} }}\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\:\int\sqrt{\:\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\:−\mathrm{1}}\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\:{ch}.\:\frac{\mathrm{1}}{{t}}={u}\:{give} \\ $$$${I}\:=\:\int\sqrt{{u}^{\mathrm{2}} −\mathrm{1}}\:\:\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}\:\frac{−{du}}{{u}^{\mathrm{2}} }\:=\:−\int\:\:\frac{\sqrt{{u}^{\mathrm{2}} \:−\mathrm{1}}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\:{du}\:{ch}.{u}={ch}\left(\alpha\right) \\ $$$${I}\:=−\int\:\:\:\:\frac{{sh}\left(\alpha\right)}{\mathrm{1}+{ch}^{\mathrm{2}} \left(\alpha\right)}\:{sh}\left(\alpha\right){d}\alpha\:\Rightarrow−{I}=\:\int\:\:\frac{{sh}^{\mathrm{2}} \left(\alpha\right)}{\mathrm{1}+{ch}^{\mathrm{2}} \left(\alpha\right)}\:{d}\alpha \\ $$$$=\:\int\:\:\:\frac{\frac{\mathrm{1}−{ch}\left(\mathrm{2}\alpha\right)}{\mathrm{2}}}{\frac{\mathrm{1}+\:\frac{\mathrm{1}+{ch}\left(\mathrm{2}\alpha\right)}{\mathrm{2}}}{}}\:{d}\alpha\:=\:\int\:\:\:\frac{\mathrm{1}−{ch}\left(\mathrm{2}\alpha\right)}{\mathrm{3}\:+{ch}\left(\mathrm{2}\alpha\right)}\:{d}\alpha \\ $$$$=\:\int\:\:\frac{\mathrm{1}−\frac{{e}^{\mathrm{2}\alpha} \:+{e}^{−\mathrm{2}\alpha} }{\mathrm{2}}}{\mathrm{3}\:+\:\frac{{e}^{\mathrm{2}\alpha} \:+{e}^{−\mathrm{2}\alpha} }{\mathrm{2}}}\:{d}\alpha\:=\:\int\:\:\:\frac{\mathrm{2}\:−{e}^{\mathrm{2}\alpha} \:−{e}^{−\mathrm{2}\alpha} }{\mathrm{6}\:+\:{e}^{\mathrm{2}\alpha} \:+{e}^{−\mathrm{2}\alpha} }\:{d}\alpha \\ $$$${ch}.\:\:{e}^{\mathrm{2}\alpha} \:={x}\:\Rightarrow\alpha=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({x}\right)\:\Rightarrow \\ $$$$−{I}\:=\:\:\int\:\:\frac{\mathrm{2}\:−{x}\:−\frac{\mathrm{1}}{{x}}}{\mathrm{6}\:+{x}\:+\frac{\mathrm{1}}{{x}}}\:\frac{{dx}}{\mathrm{2}{x}}\:=\:\int\:\:\:\:\frac{\mathrm{2}{x}−{x}^{\mathrm{2}} \:−\mathrm{1}}{{x}\left(\mathrm{12}{x}\:+\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{2}\right)}\:{dx} \\ $$$$\Rightarrow\:{I}\:=\:\int\:\:\:\frac{{x}^{\mathrm{2}} \:−\mathrm{2}{x}\:+\mathrm{1}}{\mathrm{2}{x}\left({x}^{\mathrm{2}} \:+\mathrm{6}{x}\:+\mathrm{1}\right)}\:{dx}\:\:{this}\:{integral}\:{is}\:{calculable} \\ $$$${after}\:{decomposition}\:{of}\:{the}\:{fraction}....{be}\:{continued}... \\ $$

Commented by jarjum last updated on 21/Mar/18

thank you

$${thank}\:{you}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com