Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 3228 by Rasheed Soomro last updated on 08/Dec/15

Why is circumference of a circle derivative of  its area?  (d/dr)(πr^2 )=2πr=circumference.

$$\mathcal{W}{hy}\:{is}\:{circumference}\:{of}\:{a}\:{circle}\:{derivative}\:{of} \\ $$$${its}\:{area}? \\ $$$$\frac{{d}}{{dr}}\left(\pi{r}^{\mathrm{2}} \right)=\mathrm{2}\pi{r}={circumference}. \\ $$

Commented by 123456 last updated on 08/Dec/15

it also work to sphere too (??)  V=((4πr^3 )/3)  S=4πr^2

$$\mathrm{it}\:\mathrm{also}\:\mathrm{work}\:\mathrm{to}\:\mathrm{sphere}\:\mathrm{too}\:\left(??\right) \\ $$$$\mathrm{V}=\frac{\mathrm{4}\pi{r}^{\mathrm{3}} }{\mathrm{3}} \\ $$$$\mathrm{S}=\mathrm{4}\pi{r}^{\mathrm{2}} \\ $$

Commented by prakash jain last updated on 08/Dec/15

May be it has to with formula related to  miximum area/volume given perimeter/area.

$$\mathrm{May}\:\mathrm{be}\:\mathrm{it}\:\mathrm{has}\:\mathrm{to}\:\mathrm{with}\:\mathrm{formula}\:\mathrm{related}\:\mathrm{to} \\ $$$$\mathrm{miximum}\:\mathrm{area}/\mathrm{volume}\:\mathrm{given}\:\mathrm{perimeter}/\mathrm{area}. \\ $$

Commented by 123456 last updated on 08/Dec/15

isoperimetric inequality (or something)?

$$\mathrm{isoperimetric}\:\mathrm{inequality}\:\left(\mathrm{or}\:\mathrm{something}\right)? \\ $$

Commented by Filup last updated on 08/Dec/15

Reversing the question, you get:  Why is the area the integral of its  circumferance?    The circumferance, or locus, follows:  x^2 +y^2 =r^2     The area of a full circle is then given by:  A=2∫_(−r) ^( r) (√(r^2 −x^2 ))dx=πr^2

$$\mathrm{Reversing}\:\mathrm{the}\:\mathrm{question},\:\mathrm{you}\:\mathrm{get}: \\ $$$$\mathrm{Why}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{of}\:\mathrm{its} \\ $$$$\mathrm{circumferance}? \\ $$$$ \\ $$$$\mathrm{The}\:\mathrm{circumferance},\:{or}\:{locus},\:\mathrm{follows}: \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{The}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{full}\:\mathrm{circle}\:\mathrm{is}\:\mathrm{then}\:\mathrm{given}\:\mathrm{by}: \\ $$$${A}=\mathrm{2}\int_{−{r}} ^{\:{r}} \sqrt{{r}^{\mathrm{2}} −{x}^{\mathrm{2}} }{dx}=\pi{r}^{\mathrm{2}} \\ $$

Commented by Rasheed Soomro last updated on 08/Dec/15

 Circumference here is measure of circle(locus) not   circle itself.  You have meant by circumference locus(circle)  itself.

$$\:\mathcal{C}{ircumference}\:{here}\:{is}\:{measure}\:{of}\:{circle}\left({locus}\right)\:{not}\: \\ $$$${circle}\:{itself}. \\ $$$$\mathcal{Y}{ou}\:{have}\:{meant}\:{by}\:{circumference}\:{locus}\left({circle}\right) \\ $$$${itself}. \\ $$

Commented by Filup last updated on 08/Dec/15

i see

$${i}\:{see} \\ $$

Commented by Yozzi last updated on 08/Dec/15

It would appear to me that there exists  a dimensional interpretation of the  derivative/anti−derivative of   certain physical equations.   So that, in defining a circle by  a quantity in its highest possible  dimension in 2D−space (area), the   derivative yields a 1D−space property  of the circle−the length of the line  which constitutes the circle.If we  go further, 2π then represents a  point if we perhaps decided to plot  points P(r,(d^n A/dr^n )) in the plane, knowing  the locus of a circle having area A  and radius r. So, P(r,(d^0 A/dr^0 )) gives a  shaded circle of radius r; P(r,(dA/dr)) gives a plain  circle of radius r; P(r,(d^2 A/dr^2 )) gives  a point and P(r,(d^3 A/dr^3 )) degenerates  the circle completely.    (This is just my view: it′s probably  wrong.)

$${It}\:{would}\:{appear}\:{to}\:{me}\:{that}\:{there}\:{exists} \\ $$$${a}\:{dimensional}\:{interpretation}\:{of}\:{the} \\ $$$${derivative}/{anti}−{derivative}\:{of}\: \\ $$$${certain}\:{physical}\:{equations}.\: \\ $$$${So}\:{that},\:{in}\:{defining}\:{a}\:{circle}\:{by} \\ $$$${a}\:{quantity}\:{in}\:{its}\:{highest}\:{possible} \\ $$$${dimension}\:{in}\:\mathrm{2}{D}−{space}\:\left({area}\right),\:{the}\: \\ $$$${derivative}\:{yields}\:{a}\:\mathrm{1}{D}−{space}\:{property} \\ $$$${of}\:{the}\:{circle}−{the}\:{length}\:{of}\:{the}\:{line} \\ $$$${which}\:{constitutes}\:{the}\:{circle}.{If}\:{we} \\ $$$${go}\:{further},\:\mathrm{2}\pi\:{then}\:{represents}\:{a} \\ $$$${point}\:{if}\:{we}\:{perhaps}\:{decided}\:{to}\:{plot} \\ $$$${points}\:{P}\left({r},\frac{{d}^{{n}} {A}}{{dr}^{{n}} }\right)\:{in}\:{the}\:{plane},\:{knowing} \\ $$$${the}\:{locus}\:{of}\:{a}\:{circle}\:{having}\:{area}\:{A} \\ $$$${and}\:{radius}\:{r}.\:{So},\:{P}\left({r},\frac{{d}^{\mathrm{0}} {A}}{{dr}^{\mathrm{0}} }\right)\:{gives}\:{a} \\ $$$${shaded}\:{circle}\:{of}\:{radius}\:{r};\:{P}\left({r},\frac{{dA}}{{dr}}\right)\:{gives}\:{a}\:{plain} \\ $$$${circle}\:{of}\:{radius}\:{r};\:{P}\left({r},\frac{{d}^{\mathrm{2}} {A}}{{dr}^{\mathrm{2}} }\right)\:{gives} \\ $$$${a}\:{point}\:{and}\:{P}\left({r},\frac{{d}^{\mathrm{3}} {A}}{{dr}^{\mathrm{3}} }\right)\:{degenerates} \\ $$$${the}\:{circle}\:{completely}. \\ $$$$ \\ $$$$\left({This}\:{is}\:{just}\:{my}\:{view}:\:{it}'{s}\:{probably}\right. \\ $$$$\left.{wrong}.\right) \\ $$

Answered by prakash jain last updated on 08/Dec/15

Let us say we try to find out how  much such curve exists. By the problem  definition y=f(r,x). where r is an  independent parameter.  Length of a curve L(r) =∫_0 ^(  r) (√(1+f_x (r,x)^2  ))dx  Area of curve A(r)= ∫_0 ^( r)  f(r,x)dx  The problem statement is find all  f(r,x) such that L(r)=(d/dr)A(r)  ∫_0 ^( r) (√(1+f_x (r,x)^2  ))dx=(d/dr) ∫_0 ^( r)  f(r,x)dx  ∫_0 ^( r) (√(1+f_x (r,x)^2  ))dx=f(r,r)+∫_0 ^( r) f_r (r,x)dx  ...(A)  So we need to solve the above equation to  find f(r,x).  f(r,x)=(√(r^2 −x^2 )) satisfied  (√(1+f_x (r,x)^2 ))=(√(1+(x^2 /(r^2 −x^2 ))))=(√(r^2 /(r^2 −x^2 )))=(r/(√(r^2 −x^2 )))  f_r (r,x)=(r/(√(r^2 −x^2 ))), f(r,r)=0  I will try to find more solution for A.

$$\mathrm{Let}\:\mathrm{us}\:\mathrm{say}\:\mathrm{we}\:\mathrm{try}\:\mathrm{to}\:\mathrm{find}\:\mathrm{out}\:\mathrm{how} \\ $$$$\mathrm{much}\:\mathrm{such}\:\mathrm{curve}\:\mathrm{exists}.\:\mathrm{By}\:\mathrm{the}\:\mathrm{problem} \\ $$$$\mathrm{definition}\:{y}={f}\left({r},{x}\right).\:{where}\:{r}\:{is}\:{an} \\ $$$${independent}\:{parameter}. \\ $$$$\mathrm{Length}\:\mathrm{of}\:\mathrm{a}\:\mathrm{curve}\:\mathrm{L}\left({r}\right)\:=\int_{\mathrm{0}} ^{\:\:{r}} \sqrt{\mathrm{1}+{f}_{{x}} \left({r},{x}\right)^{\mathrm{2}} \:}{dx} \\ $$$${A}\mathrm{rea}\:\mathrm{of}\:\mathrm{curve}\:\mathrm{A}\left({r}\right)=\:\int_{\mathrm{0}} ^{\:{r}} \:{f}\left({r},{x}\right){dx} \\ $$$$\mathrm{The}\:\mathrm{problem}\:\mathrm{statement}\:\mathrm{is}\:\mathrm{find}\:\mathrm{all} \\ $$$${f}\left({r},{x}\right)\:{such}\:{that}\:\mathrm{L}\left({r}\right)=\frac{{d}}{{dr}}{A}\left({r}\right) \\ $$$$\int_{\mathrm{0}} ^{\:{r}} \sqrt{\mathrm{1}+{f}_{{x}} \left({r},{x}\right)^{\mathrm{2}} \:}{dx}=\frac{{d}}{{dr}}\:\int_{\mathrm{0}} ^{\:{r}} \:{f}\left({r},{x}\right){dx} \\ $$$$\int_{\mathrm{0}} ^{\:{r}} \sqrt{\mathrm{1}+{f}_{{x}} \left({r},{x}\right)^{\mathrm{2}} \:}{dx}={f}\left({r},{r}\right)+\int_{\mathrm{0}} ^{\:{r}} {f}_{{r}} \left({r},{x}\right){dx}\:\:...\left({A}\right) \\ $$$$\mathrm{So}\:\mathrm{we}\:\mathrm{need}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{above}\:\mathrm{equation}\:\mathrm{to} \\ $$$$\mathrm{find}\:{f}\left({r},{x}\right). \\ $$$${f}\left({r},{x}\right)=\sqrt{{r}^{\mathrm{2}} −{x}^{\mathrm{2}} }\:{satisfied} \\ $$$$\sqrt{\mathrm{1}+{f}_{{x}} \left({r},{x}\right)^{\mathrm{2}} }=\sqrt{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{{r}^{\mathrm{2}} −{x}^{\mathrm{2}} }}=\sqrt{\frac{{r}^{\mathrm{2}} }{{r}^{\mathrm{2}} −{x}^{\mathrm{2}} }}=\frac{{r}}{\sqrt{{r}^{\mathrm{2}} −{x}^{\mathrm{2}} }} \\ $$$${f}_{{r}} \left({r},{x}\right)=\frac{{r}}{\sqrt{{r}^{\mathrm{2}} −{x}^{\mathrm{2}} }},\:{f}\left({r},{r}\right)=\mathrm{0} \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{try}\:\mathrm{to}\:\mathrm{find}\:\mathrm{more}\:\mathrm{solution}\:\mathrm{for}\:{A}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com