Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 32305 by abdo imad last updated on 22/Mar/18

find ∫_1 ^e  sin(ln(x))dx .

$${find}\:\int_{\mathrm{1}} ^{{e}} \:{sin}\left({ln}\left({x}\right)\right){dx}\:. \\ $$

Commented by abdo imad last updated on 24/Mar/18

let use the ch.lnx=t ⇒ I = ∫_0 ^1  sint e^t  dt  and   I =Im (∫_0 ^1   e^(it +t) dt) =Im( ∫_0 ^1  e^((1+i)t) dt) but  ∫_0 ^1  e^((1+i)t) dt = (1/(1+i))[  e^((1+i)t) ]_0 ^1  = (1/(1+i))( e^(1+i)  −1)  =((1−i)/2)( e( cos(1) +isin(1) −1)  =((e cos(1) +ie sin(1) −1 −ie cos(1) +sin(1) +i)/2)  =((e cos(1) +sin(1)−1 +i(e sin(1) −e cos(1) +1))/2)  I = (1/2)( e sin(1)−e cos(1) +1) .

$${let}\:{use}\:{the}\:{ch}.{lnx}={t}\:\Rightarrow\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{sint}\:{e}^{{t}} \:{dt}\:\:{and}\: \\ $$$${I}\:={Im}\:\left(\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{{it}\:+{t}} {dt}\right)\:={Im}\left(\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{\left(\mathrm{1}+{i}\right){t}} {dt}\right)\:{but} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{\left(\mathrm{1}+{i}\right){t}} {dt}\:=\:\frac{\mathrm{1}}{\mathrm{1}+{i}}\left[\:\:{e}^{\left(\mathrm{1}+{i}\right){t}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{1}+{i}}\left(\:{e}^{\mathrm{1}+{i}} \:−\mathrm{1}\right) \\ $$$$=\frac{\mathrm{1}−{i}}{\mathrm{2}}\left(\:{e}\left(\:{cos}\left(\mathrm{1}\right)\:+{isin}\left(\mathrm{1}\right)\:−\mathrm{1}\right)\right. \\ $$$$=\frac{{e}\:{cos}\left(\mathrm{1}\right)\:+{ie}\:{sin}\left(\mathrm{1}\right)\:−\mathrm{1}\:−{ie}\:{cos}\left(\mathrm{1}\right)\:+{sin}\left(\mathrm{1}\right)\:+{i}}{\mathrm{2}} \\ $$$$=\frac{{e}\:{cos}\left(\mathrm{1}\right)\:+{sin}\left(\mathrm{1}\right)−\mathrm{1}\:+{i}\left({e}\:{sin}\left(\mathrm{1}\right)\:−{e}\:{cos}\left(\mathrm{1}\right)\:+\mathrm{1}\right)}{\mathrm{2}} \\ $$$${I}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\:{e}\:{sin}\left(\mathrm{1}\right)−{e}\:{cos}\left(\mathrm{1}\right)\:+\mathrm{1}\right)\:. \\ $$

Answered by sma3l2996 last updated on 23/Mar/18

u=sin(lnx)⇒u′=(1/x)cos(lnx)  v′=1⇒v=x  so  ∫_1 ^e sin(lnx)dx=[xsin(lnx)]_1 ^e −∫_1 ^e cos(lnx)dx  =esin(1)−∫_1 ^e cos(lnx)dx  u=cos(lnx)⇒u′=−(1/x)sin(lnx)  v′=1⇒v=x  ∫_1 ^e sin(lnx)dx=e.sin(1)−[xcos(lnx)]_1 ^e −∫_1 ^e sin(lnx)dx  2∫_1 ^e sin(lnx)dx=e.sin(1)−e.cos(1)+1  ∫_1 ^e sin(lnx)dx=(e/2)(sin1−cos1)+(1/2)

$${u}={sin}\left({lnx}\right)\Rightarrow{u}'=\frac{\mathrm{1}}{{x}}{cos}\left({lnx}\right) \\ $$$${v}'=\mathrm{1}\Rightarrow{v}={x} \\ $$$${so}\:\:\int_{\mathrm{1}} ^{{e}} {sin}\left({lnx}\right){dx}=\left[{xsin}\left({lnx}\right)\right]_{\mathrm{1}} ^{{e}} −\int_{\mathrm{1}} ^{{e}} {cos}\left({lnx}\right){dx} \\ $$$$={esin}\left(\mathrm{1}\right)−\int_{\mathrm{1}} ^{{e}} {cos}\left({lnx}\right){dx} \\ $$$${u}={cos}\left({lnx}\right)\Rightarrow{u}'=−\frac{\mathrm{1}}{{x}}{sin}\left({lnx}\right) \\ $$$${v}'=\mathrm{1}\Rightarrow{v}={x} \\ $$$$\int_{\mathrm{1}} ^{{e}} {sin}\left({lnx}\right){dx}={e}.{sin}\left(\mathrm{1}\right)−\left[{xcos}\left({lnx}\right)\right]_{\mathrm{1}} ^{{e}} −\int_{\mathrm{1}} ^{{e}} {sin}\left({lnx}\right){dx} \\ $$$$\mathrm{2}\int_{\mathrm{1}} ^{{e}} {sin}\left({lnx}\right){dx}={e}.{sin}\left(\mathrm{1}\right)−{e}.{cos}\left(\mathrm{1}\right)+\mathrm{1} \\ $$$$\int_{\mathrm{1}} ^{{e}} {sin}\left({lnx}\right){dx}=\frac{{e}}{\mathrm{2}}\left({sin}\mathrm{1}−{cos}\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by abdo imad last updated on 24/Mar/18

correct answer thanks...

$${correct}\:{answer}\:{thanks}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com