All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 32305 by abdo imad last updated on 22/Mar/18
find∫1esin(ln(x))dx.
Commented by abdo imad last updated on 24/Mar/18
letusethech.lnx=t⇒I=∫01sintetdtandI=Im(∫01eit+tdt)=Im(∫01e(1+i)tdt)but∫01e(1+i)tdt=11+i[e(1+i)t]01=11+i(e1+i−1)=1−i2(e(cos(1)+isin(1)−1)=ecos(1)+iesin(1)−1−iecos(1)+sin(1)+i2=ecos(1)+sin(1)−1+i(esin(1)−ecos(1)+1)2I=12(esin(1)−ecos(1)+1).
Answered by sma3l2996 last updated on 23/Mar/18
u=sin(lnx)⇒u′=1xcos(lnx)v′=1⇒v=xso∫1esin(lnx)dx=[xsin(lnx)]1e−∫1ecos(lnx)dx=esin(1)−∫1ecos(lnx)dxu=cos(lnx)⇒u′=−1xsin(lnx)v′=1⇒v=x∫1esin(lnx)dx=e.sin(1)−[xcos(lnx)]1e−∫1esin(lnx)dx2∫1esin(lnx)dx=e.sin(1)−e.cos(1)+1∫1esin(lnx)dx=e2(sin1−cos1)+12
correctanswerthanks...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com