Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 32312 by NECx last updated on 23/Mar/18

A small ball is dropped from a   height of 1m into a horizontal  floor.Each time it rebounces to  3/5 of the height it has fallen.  a)show that when the ball strikes  the ground for the third time ,it  has travelled a distance of 2.92m  b)Show that the total distance  travelled by the ball cant exceed  4m.

$${A}\:{small}\:{ball}\:{is}\:{dropped}\:{from}\:{a}\: \\ $$$${height}\:{of}\:\mathrm{1}{m}\:{into}\:{a}\:{horizontal} \\ $$$${floor}.{Each}\:{time}\:{it}\:{rebounces}\:{to} \\ $$$$\mathrm{3}/\mathrm{5}\:{of}\:{the}\:{height}\:{it}\:{has}\:{fallen}. \\ $$$$\left.{a}\right){show}\:{that}\:{when}\:{the}\:{ball}\:{strikes} \\ $$$${the}\:{ground}\:{for}\:{the}\:{third}\:{time}\:,{it} \\ $$$${has}\:{travelled}\:{a}\:{distance}\:{of}\:\mathrm{2}.\mathrm{92}{m} \\ $$$$\left.{b}\right){Show}\:{that}\:{the}\:{total}\:{distance} \\ $$$${travelled}\:{by}\:{the}\:{ball}\:{cant}\:{exceed} \\ $$$$\mathrm{4}{m}. \\ $$

Commented by NECx last updated on 23/Mar/18

please help with this

$${please}\:{help}\:{with}\:{this} \\ $$

Answered by mrW2 last updated on 23/Mar/18

1st strike: l_1 =1  2nd strike: l_2 =1+(3/5)×2  3rd strike: l_3 =1+(3/5)×2+((3/5))^2 ×2=2.92m  ....  n−th strike: l_n =1+(3/5)×2+((3/5))^2 ×2+...+((3/5))^(n−1) ×2  l_n =2[1+(3/5)+((3/5))^2 +...+((3/5))^(n−1) ]−1  lim_(n→∞)  l_n =(2/(1−(3/5)))−1=4 m  ⇒l_n <4 m

$$\mathrm{1}{st}\:{strike}:\:{l}_{\mathrm{1}} =\mathrm{1} \\ $$$$\mathrm{2}{nd}\:{strike}:\:{l}_{\mathrm{2}} =\mathrm{1}+\frac{\mathrm{3}}{\mathrm{5}}×\mathrm{2} \\ $$$$\mathrm{3}{rd}\:{strike}:\:{l}_{\mathrm{3}} =\mathrm{1}+\frac{\mathrm{3}}{\mathrm{5}}×\mathrm{2}+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{2}} ×\mathrm{2}=\mathrm{2}.\mathrm{92}{m} \\ $$$$.... \\ $$$${n}−{th}\:{strike}:\:{l}_{{n}} =\mathrm{1}+\frac{\mathrm{3}}{\mathrm{5}}×\mathrm{2}+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{2}} ×\mathrm{2}+...+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{{n}−\mathrm{1}} ×\mathrm{2} \\ $$$${l}_{{n}} =\mathrm{2}\left[\mathrm{1}+\frac{\mathrm{3}}{\mathrm{5}}+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{2}} +...+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{{n}−\mathrm{1}} \right]−\mathrm{1} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{l}_{{n}} =\frac{\mathrm{2}}{\mathrm{1}−\frac{\mathrm{3}}{\mathrm{5}}}−\mathrm{1}=\mathrm{4}\:{m} \\ $$$$\Rightarrow{l}_{{n}} <\mathrm{4}\:{m} \\ $$

Commented by NECx last updated on 25/Mar/18

wow..... Thanks

$${wow}.....\:{Thanks} \\ $$

Commented by NECx last updated on 25/Mar/18

If I may ask,what does the ×2  represents. Since the object reboundes  (3/5) of the actual height I thought  it would have been   l_2 =1+((3/5))×2    please explain.Thanks

$${If}\:{I}\:{may}\:{ask},{what}\:{does}\:{the}\:×\mathrm{2} \\ $$$${represents}.\:{Since}\:{the}\:{object}\:{reboundes} \\ $$$$\frac{\mathrm{3}}{\mathrm{5}}\:{of}\:{the}\:{actual}\:{height}\:{I}\:{thought} \\ $$$${it}\:{would}\:{have}\:{been}\: \\ $$$${l}_{\mathrm{2}} =\mathrm{1}+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)×\mathrm{2} \\ $$$$ \\ $$$${please}\:{explain}.{Thanks} \\ $$

Commented by mrW2 last updated on 06/Apr/18

you are right sir. it is also that what  I wrote:  l_2 =1+((3/5))×2  l_3 =1+((3/5))×2+((3/5))^2 ×2  ......  l_n =1+((3/5))×2+((3/5))^2 ×2+...+((3/5))^(n−1) ×2

$${you}\:{are}\:{right}\:{sir}.\:{it}\:{is}\:{also}\:{that}\:{what} \\ $$$${I}\:{wrote}: \\ $$$${l}_{\mathrm{2}} =\mathrm{1}+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)×\mathrm{2} \\ $$$${l}_{\mathrm{3}} =\mathrm{1}+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)×\mathrm{2}+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{2}} ×\mathrm{2} \\ $$$$...... \\ $$$${l}_{{n}} =\mathrm{1}+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)×\mathrm{2}+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{\mathrm{2}} ×\mathrm{2}+...+\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{{n}−\mathrm{1}} ×\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com