Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 32330 by abdo imad last updated on 23/Mar/18

let p_n (x)=(x+1)^(6n+1)  −x^(6n+1)  −1 with n integr  prove that ∀n  (x^2 +x+1)^2  divide p_n (x).

$${let}\:{p}_{{n}} \left({x}\right)=\left({x}+\mathrm{1}\right)^{\mathrm{6}{n}+\mathrm{1}} \:−{x}^{\mathrm{6}{n}+\mathrm{1}} \:−\mathrm{1}\:{with}\:{n}\:{integr} \\ $$$${prove}\:{that}\:\forall{n}\:\:\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} \:{divide}\:{p}_{{n}} \left({x}\right). \\ $$

Commented by abdo imad last updated on 01/Apr/18

the roots of x^2  +x+1 are j and j^2  with j=e^(i((2π)/3))  for that  we must prove that p_n (j)=p_n (j^2 )=0 andp^′ (j)=p^′ (j^2 )=0  p_n (j) =(j+1)^(6n+1)  −j^(6n+1)  −1  =(−1)^(6n+1)  (j^2 )^(6n+1)   −j −1 = −j^2  −j−1=0 wit j^3 =1  p_n (j^2 ) =(j^2 +1)^(6n+1)  − (j^2 )^(6n+1)  −1  =(−j)^(6n+1)   −j^2  −1  =−j −j^2  −1=0  we have p^′ (x) =(6n+1)(x+1)^(6n)  −(6n+1)x^(6n) ⇒  p^′ (j) =(6n+1)( (j+1)^(6n)  −j^(6n) ) =(6n+1)(j^(12n)  −j^(6n) )=0  p^′ (j^2 )=(6n+1)( (1+j^2 )^(6n)   −(j^2 )^(6n) ) =(6n+1)((−j)^(6n)  −j^(12n) )=0

$${the}\:{roots}\:{of}\:{x}^{\mathrm{2}} \:+{x}+\mathrm{1}\:{are}\:{j}\:{and}\:{j}^{\mathrm{2}} \:{with}\:{j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \:{for}\:{that} \\ $$$${we}\:{must}\:{prove}\:{that}\:{p}_{{n}} \left({j}\right)={p}_{{n}} \left({j}^{\mathrm{2}} \right)=\mathrm{0}\:{andp}^{'} \left({j}\right)={p}^{'} \left({j}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${p}_{{n}} \left({j}\right)\:=\left({j}+\mathrm{1}\right)^{\mathrm{6}{n}+\mathrm{1}} \:−{j}^{\mathrm{6}{n}+\mathrm{1}} \:−\mathrm{1} \\ $$$$=\left(−\mathrm{1}\right)^{\mathrm{6}{n}+\mathrm{1}} \:\left({j}^{\mathrm{2}} \right)^{\mathrm{6}{n}+\mathrm{1}} \:\:−{j}\:−\mathrm{1}\:=\:−{j}^{\mathrm{2}} \:−{j}−\mathrm{1}=\mathrm{0}\:{wit}\:{j}^{\mathrm{3}} =\mathrm{1} \\ $$$${p}_{{n}} \left({j}^{\mathrm{2}} \right)\:=\left({j}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{6}{n}+\mathrm{1}} \:−\:\left({j}^{\mathrm{2}} \right)^{\mathrm{6}{n}+\mathrm{1}} \:−\mathrm{1} \\ $$$$=\left(−{j}\right)^{\mathrm{6}{n}+\mathrm{1}} \:\:−{j}^{\mathrm{2}} \:−\mathrm{1}\:\:=−{j}\:−{j}^{\mathrm{2}} \:−\mathrm{1}=\mathrm{0} \\ $$$${we}\:{have}\:{p}^{'} \left({x}\right)\:=\left(\mathrm{6}{n}+\mathrm{1}\right)\left({x}+\mathrm{1}\right)^{\mathrm{6}{n}} \:−\left(\mathrm{6}{n}+\mathrm{1}\right){x}^{\mathrm{6}{n}} \Rightarrow \\ $$$${p}^{'} \left({j}\right)\:=\left(\mathrm{6}{n}+\mathrm{1}\right)\left(\:\left({j}+\mathrm{1}\right)^{\mathrm{6}{n}} \:−{j}^{\mathrm{6}{n}} \right)\:=\left(\mathrm{6}{n}+\mathrm{1}\right)\left({j}^{\mathrm{12}{n}} \:−{j}^{\mathrm{6}{n}} \right)=\mathrm{0} \\ $$$${p}^{'} \left({j}^{\mathrm{2}} \right)=\left(\mathrm{6}{n}+\mathrm{1}\right)\left(\:\left(\mathrm{1}+{j}^{\mathrm{2}} \right)^{\mathrm{6}{n}} \:\:−\left({j}^{\mathrm{2}} \right)^{\mathrm{6}{n}} \right)\:=\left(\mathrm{6}{n}+\mathrm{1}\right)\left(\left(−{j}\right)^{\mathrm{6}{n}} \:−{j}^{\mathrm{12}{n}} \right)=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com