Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32339 by abdo imad last updated on 23/Mar/18

calculate  ∫_0 ^(+∞)    ((th(3x) −th(2x))/x) dx .

$${calculate}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{th}\left(\mathrm{3}{x}\right)\:−{th}\left(\mathrm{2}{x}\right)}{{x}}\:{dx}\:. \\ $$

Commented by abdo imad last updated on 24/Mar/18

I =lim _(ξ→+∞) I(ξ)  with I(ξ) = ∫_0 ^(ξ  )   ((th(3x)−th(2x))/x)dx  I(ξ) = ∫_0 ^ξ    ((th(3x))/x) dx −∫_0 ^ξ  ((th(2x))/x)dx  but ch.3x=t give  ∫_0 ^ξ   ((th(3x))/x)dx = ∫_0 ^(3ξ)   ((th(t))/(t/3)) (dt/3) =∫_0 ^(3ξ)   ((th(t))/t)dt also we have  ∫_0 ^ξ  ((th(2x))/x)dx = ∫_0 ^(2ξ)   ((th(t))/t)dt ⇒  I(ξ) = ∫_0 ^(3ξ)  ((th(t))/t)dt −∫_0 ^(2ξ)   ((th(t))/t)dt =∫_(2ξ) ^(3ξ)    ((th(t))/t)dt but  ∃ c ∈]2ξ,3ξ[ / I(ξ) =th(c) ∫_(2ξ) ^(3ξ)   (dt/t)=ln((3/2))th(c)  ⇒  lim_(ξ→+∞)  I(ξ) =ln(3)−ln(2) .( look that lim_(c→+∞) thc=1)

$${I}\:={lim}\:_{\xi\rightarrow+\infty} {I}\left(\xi\right)\:\:{with}\:{I}\left(\xi\right)\:=\:\int_{\mathrm{0}} ^{\xi\:\:} \:\:\frac{{th}\left(\mathrm{3}{x}\right)−{th}\left(\mathrm{2}{x}\right)}{{x}}{dx} \\ $$$${I}\left(\xi\right)\:=\:\int_{\mathrm{0}} ^{\xi} \:\:\:\frac{{th}\left(\mathrm{3}{x}\right)}{{x}}\:{dx}\:−\int_{\mathrm{0}} ^{\xi} \:\frac{{th}\left(\mathrm{2}{x}\right)}{{x}}{dx}\:\:{but}\:{ch}.\mathrm{3}{x}={t}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\xi} \:\:\frac{{th}\left(\mathrm{3}{x}\right)}{{x}}{dx}\:=\:\int_{\mathrm{0}} ^{\mathrm{3}\xi} \:\:\frac{{th}\left({t}\right)}{\frac{{t}}{\mathrm{3}}}\:\frac{{dt}}{\mathrm{3}}\:=\int_{\mathrm{0}} ^{\mathrm{3}\xi} \:\:\frac{{th}\left({t}\right)}{{t}}{dt}\:{also}\:{we}\:{have} \\ $$$$\int_{\mathrm{0}} ^{\xi} \:\frac{{th}\left(\mathrm{2}{x}\right)}{{x}}{dx}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\xi} \:\:\frac{{th}\left({t}\right)}{{t}}{dt}\:\Rightarrow \\ $$$${I}\left(\xi\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{3}\xi} \:\frac{{th}\left({t}\right)}{{t}}{dt}\:−\int_{\mathrm{0}} ^{\mathrm{2}\xi} \:\:\frac{{th}\left({t}\right)}{{t}}{dt}\:=\int_{\mathrm{2}\xi} ^{\mathrm{3}\xi} \:\:\:\frac{{th}\left({t}\right)}{{t}}{dt}\:{but} \\ $$$$\left.\exists\:{c}\:\in\right]\mathrm{2}\xi,\mathrm{3}\xi\left[\:/\:{I}\left(\xi\right)\:={th}\left({c}\right)\:\int_{\mathrm{2}\xi} ^{\mathrm{3}\xi} \:\:\frac{{dt}}{{t}}={ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right){th}\left({c}\right)\:\:\Rightarrow\right. \\ $$$${lim}_{\xi\rightarrow+\infty} \:{I}\left(\xi\right)\:={ln}\left(\mathrm{3}\right)−{ln}\left(\mathrm{2}\right)\:.\left(\:{look}\:{that}\:{lim}_{{c}\rightarrow+\infty} {thc}=\mathrm{1}\right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com