All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36931 by maxmathsup by imad last updated on 07/Jun/18
calculate∫02πdtx−eit
Commented by math khazana by abdo last updated on 09/Jun/18
letf(x)=∫02πdtx−eitf(x)=∫02πdtx−cost−isint=∫02πx−cost+isint(x−cost)2+sin2tdt=∫02πx−cost(x−cost)2+sin2tdt+i∫02πsint(x−cost)2+sin2tdt=I+iJI=∫0πx−costx2−2xcost+1dt+∫π2πx−costx2−2xcost+1chang.tan(t2)=ugive∫0πx−costx2−2xcost+1dt=∫0∞x−1−u21+u2x2−2x1−u21+u2+12du1+u2=∫0∞x(1+u2)−1+u2(1+u2)2(x2(1+u2)−2x+2xu21+u2)du=∫0∞x+xu2−1+u2(1+u2){x2+x2u2−2x+2xu2)du=∫0∞(x+1)u2+x−1(1+u2){(x2+2x)u2+x2−2x}du=1x∫0∞(x+1)u2+x−1(1+u2)((x+2)u2+x−2)du=1x(x+2)∫0∞(x+1)u2+x−1(1+u2)(u2+x−2x+2)ducase1x−2x+2>0andx(x+2)≠0letφ(z)=(x+1)z2+x−1(1+z2)(z2+x−2x+2)thepolesofφarei,−i,ix−2x+2,−ix−2x+2∫−∞+∞φ(z)dz=2iπ{Res(φ,i)+Res(φ,ix−2x+2)}Res(φ,i)=(x+1)(−1)+x−12i(−1+x−2x+2)=−22i−4x+2=−2(x+2)−8i=x+24iRes(φ,ix−2x+2)=−(x+1)x−2x+2+x−12ix−2x+2(1−x−2x+2)=(x−1)(x+2)−(x+1)(x−2)2i(x+2)x−2x+2(x+2−x+2)=x2+x−2−(x2−x−2)8i(x+2)x−2x+2=2x8ix2−4=x4ix2−4∫−∞+φ(z)dz=2iπ{x+24i+x4ix2−4}=π2(x+2)+πx2x2−4⇒∫0πx−costx2−2xcost+1dt=1x(x+2){π4(x+2)+πx4x2−4.}=π4x+π4(x+2)x2−4.case2x−2x+2<0⇒φ(z)=(x+1)z2+x−1(1+z2)(z2−2−x2+x)andtherootsofφarei,−i,2−x2+x,−2−x2+xandwefollowthesamemethod...
∫π2πx−costx2−2xcost+1dt=t=π+u∫0πx+cosux2+2xcosu+1du...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com