Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36931 by maxmathsup by imad last updated on 07/Jun/18

calculate  ∫_0 ^(2π)    (dt/(x −e^(it) ))

calculate02πdtxeit

Commented by math khazana by abdo last updated on 09/Jun/18

let f(x) = ∫_0 ^(2π)    (dt/(x −e^(it) ))  f(x)= ∫_0 ^(2π)    (dt/(x−cost −isint))  =∫_0 ^(2π)   ((x−cost +i sint)/((x−cost)^2  +sin^2 t))dt  =∫_0 ^(2π)   ((x−cost)/((x−cost)^2  +sin^2 t))dt +i ∫_0 ^(2π)  ((sint)/((x−cost)^2  +sin^2 t))dt  =I +iJ  I = ∫_0 ^π    ((x−cost)/(x^2  −2x cost  +1))dt +∫_π ^(2π)    ((x−cost)/(x^2  −2xcost +1))  chang.tan((t/2)) =u give  ∫_0 ^π    ((x−cost)/(x^2 −2x cost +1))dt = ∫_0 ^∞    ((x −((1−u^2 )/(1+u^2 )))/(x^2  −2x ((1−u^2 )/(1+u^2 )) +1)) ((2du)/(1+u^2 ))  = ∫_0 ^∞     ((x(1+u^2 ) −1+u^2 )/((1+u^2 )^2  (((x^2 (1+u^2 )−2x+2xu^2 )/(1+u^2 )))))du  =∫_0 ^∞      ((x +xu^2  −1+u^2 )/((1+u^2 ){x^2  +x^2 u^2  −2x +2xu^2 )))du  =∫_0 ^∞   (((x+1)u^2  +x−1)/((1+u^2 ){ (x^2  +2x)u^2  +x^2  −2x}))du  =(1/x)∫_0 ^∞     (((x+1)u^2  +x−1)/((1+u^2 )( (x+2)u^2  +x−2))) du  = (1/(x(x+2)))∫_0 ^∞    (((x+1)u^2  +x−1)/((1+u^2 )(u^2  +((x−2)/(x+2)))))du  case1 ((x−2)/(x+2))>0 andx(x+2)≠0 let  ϕ(z)= (((x+1)z^2  +x−1)/((1+z^2 )(z^(2 )  +((x−2)/(x+2))))) the poles of ϕ are  i ,−i, i(√((x−2)/(x+2))),−i(√((x−2)/(x+2)))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ { Res(ϕ,i)+Res(ϕ,i(√((x−2)/(x+2))))}  Res(ϕ,i) = (((x+1)(−1) +x−1)/(2i(−1 +((x−2)/(x+2))))) =((−2)/(2i((−4)/(x+2))))  =((−2(x+2))/(−8i)) = ((x+2)/(4i))  Res(ϕ,i(√((x−2)/(x+2)))) = ((−(x+1)((x−2)/(x+2)) +x−1)/(2i(√((x−2)/(x+2)))(1−((x−2)/(x+2)))))  = (((x−1)(x+2)−(x+1)(x−2))/(2i(x+2)(√((x−2)/(x+2)))(x+2 −x+2)))  = ((x^2  +x −2 −(x^2  −x−2))/(8i(x+2)(√((x−2)/(x+2)))))  = ((2x)/(8i(√(x^2  −4)))) = (x/(4i(√(x^2  −4))))  ∫_(−∞) ^+  ϕ(z)dz =2iπ{ ((x+2)/(4i)) + (x/(4i(√(x^2 −4))))}  =(π/2)(x+2) +((πx)/(2(√(x^2  −4)))) ⇒  ∫_0 ^π    ((x−cost)/(x^2  −2x cost +1)) dt =(1/(x(x+2))){(π/4)(x+2) +((πx)/(4(√(x^2  −4)))) .}  = (π/(4x)) +(π/(4(x+2)(√(x^2  −4)))) .  case 2  ((x−2)/(x+2))<0 ⇒  ϕ(z) = (((x+1)z^2  +x−1)/((1+z^2 )(z^2  − ((2−x)/(2+x))))) and the roots of ϕ are  i,−i,(√((2−x)/(2+x)))  ,−(√( ((2−x)/(2+x))))  and we follow the same  method...

letf(x)=02πdtxeitf(x)=02πdtxcostisint=02πxcost+isint(xcost)2+sin2tdt=02πxcost(xcost)2+sin2tdt+i02πsint(xcost)2+sin2tdt=I+iJI=0πxcostx22xcost+1dt+π2πxcostx22xcost+1chang.tan(t2)=ugive0πxcostx22xcost+1dt=0x1u21+u2x22x1u21+u2+12du1+u2=0x(1+u2)1+u2(1+u2)2(x2(1+u2)2x+2xu21+u2)du=0x+xu21+u2(1+u2){x2+x2u22x+2xu2)du=0(x+1)u2+x1(1+u2){(x2+2x)u2+x22x}du=1x0(x+1)u2+x1(1+u2)((x+2)u2+x2)du=1x(x+2)0(x+1)u2+x1(1+u2)(u2+x2x+2)ducase1x2x+2>0andx(x+2)0letφ(z)=(x+1)z2+x1(1+z2)(z2+x2x+2)thepolesofφarei,i,ix2x+2,ix2x+2+φ(z)dz=2iπ{Res(φ,i)+Res(φ,ix2x+2)}Res(φ,i)=(x+1)(1)+x12i(1+x2x+2)=22i4x+2=2(x+2)8i=x+24iRes(φ,ix2x+2)=(x+1)x2x+2+x12ix2x+2(1x2x+2)=(x1)(x+2)(x+1)(x2)2i(x+2)x2x+2(x+2x+2)=x2+x2(x2x2)8i(x+2)x2x+2=2x8ix24=x4ix24+φ(z)dz=2iπ{x+24i+x4ix24}=π2(x+2)+πx2x240πxcostx22xcost+1dt=1x(x+2){π4(x+2)+πx4x24.}=π4x+π4(x+2)x24.case2x2x+2<0φ(z)=(x+1)z2+x1(1+z2)(z22x2+x)andtherootsofφarei,i,2x2+x,2x2+xandwefollowthesamemethod...

Commented by math khazana by abdo last updated on 09/Jun/18

∫_π ^(2π)    ((x−cost)/(x^2  −2xcost +1))dt =_(t=π+u)  ∫_0 ^π   ((x+cosu)/(x^2  +2x cosu +1))du  ...

π2πxcostx22xcost+1dt=t=π+u0πx+cosux2+2xcosu+1du...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com