All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 32349 by abdo imad last updated on 23/Mar/18
findthevalueof∫0πxdx1+sinx.
Commented by abdo imad last updated on 24/Mar/18
thech.tan(x2)=tgiveI=∫0πxdx1+sinx=∫0∞2artant1+2t1+t22dt1+t2=4∫0∞arctant1+t2+2tdt=4∫0∞arctant(t+1)2dt′bypartswegetI=4([−1t+1arctant]o+∞−∫0∞−1t+1dt1+t2)I=4∫0∞dt(t+1)(t2+1)letdecomposef(t)=1(t+1)(t2+1)=at+1+bt+ct2+1a=limt→−1(t+1)f(t)=12limt→+∞tf(t)=0=a+b⇒b=−a=−12⇒f(t)=12(t+1)+−12t+ct2+1f(0)=1=12+c⇒c=12⇒f(t)=12(t+1)+12−t+1t2+1I=2∫0∞(1t+1−t−1t2+1)dt=2∫0∞(1t+1−122tt2+1)dt+2∫0∞dtt2+1I=2[ln∣t+1∣−lnt2+1]0∞+πI=2[ln∣t+1t2+1∣]0∞+π=0+π⇒I=π.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com