Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32349 by abdo imad last updated on 23/Mar/18

find the value of  ∫_0 ^π    ((xdx)/(1+sinx)) .

findthevalueof0πxdx1+sinx.

Commented by abdo imad last updated on 24/Mar/18

the ch.tan((x/2))=t give  I =∫_0 ^π   ((xdx)/(1+sinx)) =∫_0 ^∞   ((2artant)/(1+((2t)/(1+t^2 )))) ((2dt)/(1+t^2 ))  =4 ∫_0 ^∞    ((arctant)/(1+t^2  +2t))dt =4 ∫_0 ^∞    ((arctant)/((t+1)^2 ))dt ′by parts we get  I =4(  [−(1/(t+1)) arctant]_o ^(+∞)  −∫_0 ^∞ −(1/(t+1)) (dt/(1+t^2 )))  I =4 ∫_0 ^∞    (dt/((t+1)(t^2  +1)))  let decompose  f(t) = (1/((t+1)(t^2  +1))) =(a/(t+1)) +((bt +c)/(t^2  +1))   a=lim_(t→−1) (t+1)f(t) =(1/2)  lim_(t→+∞) tf(t) =0 =a +b ⇒b=−a=−(1/2) ⇒  f(t) = (1/(2(t+1))) +((((−1)/2)t +c)/(t^2  +1))  f(0) =1 = (1/2) +c ⇒ c=(1/2) ⇒f(t)= (1/(2(t+1))) +(1/2) ((−t +1)/(t^2  +1))  I = 2∫_0 ^∞ (  (1/(t+1)) −((t−1)/(t^2 +1)))dt  =2∫_0 ^∞ ( (1/(t+1)) −(1/2) ((2t)/(t^2  +1)))dt +2 ∫_0 ^∞   (dt/(t^2  +1))  I = 2 [ln∣t+1∣−ln(√(t^2  +1)) ]_0 ^∞   +π  I = 2 [ln∣ ((t+1)/(√(t^2 +1)))∣]_0 ^∞  +π =0+π ⇒ I =π .

thech.tan(x2)=tgiveI=0πxdx1+sinx=02artant1+2t1+t22dt1+t2=40arctant1+t2+2tdt=40arctant(t+1)2dtbypartswegetI=4([1t+1arctant]o+01t+1dt1+t2)I=40dt(t+1)(t2+1)letdecomposef(t)=1(t+1)(t2+1)=at+1+bt+ct2+1a=limt1(t+1)f(t)=12limt+tf(t)=0=a+bb=a=12f(t)=12(t+1)+12t+ct2+1f(0)=1=12+cc=12f(t)=12(t+1)+12t+1t2+1I=20(1t+1t1t2+1)dt=20(1t+1122tt2+1)dt+20dtt2+1I=2[lnt+1lnt2+1]0+πI=2[lnt+1t2+1]0+π=0+πI=π.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com