Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32351 by abdo imad last updated on 23/Mar/18

calculate ∫_0 ^(π/2)       (dt/(1+cosθ sint)) .

calculate0π2dt1+cosθsint.

Answered by sma3l2996 last updated on 25/Mar/18

let x=tan(t/2)⇒dt=((2dx)/(1+x^2 ))  sint=((2x)/(1+x^2 ))  ∫_0 ^(π/2) (dt/(1+cosθsint))=2∫_0 ^1 (dx/(1+x^2 +2xcosθ))=2∫_0 ^1 (dx/((x+cosθ)^2 +sin^2 θ))  =(2/(sin^2 θ))∫_0 ^1 (dx/((((x+cosθ)/(sinθ)))^2 +1))  let u=((x+cosθ)/(sinθ))⇒dx=sinθdu  ∫_0 ^(π/2) (dt/(1+cosθsint))=(2/(sinθ))∫_(cotθ) ^((1+cosθ)/(sinθ)) (du/(u^2 +1))=(2/(sinθ))[arctan(((x+cosθ)/(sinθ)))]_0 ^1   =(2/(sinθ))(arctan(((1+cosθ)/(sinθ)))−arctan(cotθ))

letx=tan(t/2)dt=2dx1+x2sint=2x1+x20π/2dt1+cosθsint=201dx1+x2+2xcosθ=201dx(x+cosθ)2+sin2θ=2sin2θ01dx(x+cosθsinθ)2+1letu=x+cosθsinθdx=sinθdu0π/2dt1+cosθsint=2sinθcotθ1+cosθsinθduu2+1=2sinθ[arctan(x+cosθsinθ)]01=2sinθ(arctan(1+cosθsinθ)arctan(cotθ))

Terms of Service

Privacy Policy

Contact: info@tinkutara.com