All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 32351 by abdo imad last updated on 23/Mar/18
calculate∫0π2dt1+cosθsint.
Answered by sma3l2996 last updated on 25/Mar/18
letx=tan(t/2)⇒dt=2dx1+x2sint=2x1+x2∫0π/2dt1+cosθsint=2∫01dx1+x2+2xcosθ=2∫01dx(x+cosθ)2+sin2θ=2sin2θ∫01dx(x+cosθsinθ)2+1letu=x+cosθsinθ⇒dx=sinθdu∫0π/2dt1+cosθsint=2sinθ∫cotθ1+cosθsinθduu2+1=2sinθ[arctan(x+cosθsinθ)]01=2sinθ(arctan(1+cosθsinθ)−arctan(cotθ))
Terms of Service
Privacy Policy
Contact: info@tinkutara.com