Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32363 by prof Abdo imad last updated on 23/Mar/18

let consider the function  f(x,θ) =  ∫_x ^x^2  ln( 2+sinθ cost)dt  calculate (∂f/∂x)(x,θ) and  (∂f/∂θ)(x,θ) .

$${let}\:{consider}\:{the}\:{function} \\ $$$${f}\left({x},\theta\right)\:=\:\:\int_{{x}} ^{{x}^{\mathrm{2}} } {ln}\left(\:\mathrm{2}+{sin}\theta\:{cost}\right){dt} \\ $$$${calculate}\:\frac{\partial{f}}{\partial{x}}\left({x},\theta\right)\:{and}\:\:\frac{\partial{f}}{\partial\theta}\left({x},\theta\right)\:. \\ $$

Commented by prof Abdo imad last updated on 25/Mar/18

(∂f/∂x)(x,θ) = 2x ln(2 +sinθ cos(x^2 ))−ln(2+sinθ cosx)  (∂f/∂θ)(x,θ) = ∫_x ^x^2    ((cost cosθ)/(2+costsinθ)) dt  ch. tan((t/2))=ugive  (∂f/∂θ) = ∫_(tan((x/2))) ^(tan((x^2 /2)))    ((cosθ((1−u^2 )/(1+u^2 )))/(2+sinθ((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))  = ∫_(tan((x/2))) ^(tan((x^2 /2)))      (((1−u^2 )cosθ)/((1+u^2 )(2 +(1−u^2 )sinθ)))du  = ∫_(tan((x/2))) ^(tan((x^2 /2)))    ((α −αu^2 )/((1+u^2 )(2+β −βu^2 ))) du whit α=cosθ  and β=sinθ  =∫_(tan((x/2))) ^(tan((x^2 /2))  )      ((−αu^2  +α)/((1+u^2 )(−βu^2 +β+2)))du let decompose  f(u) =  ((αu^2  −α)/((1+u^2 )(βu^2 −β−2)))  =  ((αu^2  −α)/(β(1+u^2 )( u^2  −((√((β+2)/β)))^2 )))  =  (a/((u−(√((β+2)/β)))))  +(b/(u+(√((β+2)/β))))  + ((cu +d)/(u^2  +1)) ...be  conyinued....

$$\frac{\partial{f}}{\partial{x}}\left({x},\theta\right)\:=\:\mathrm{2}{x}\:{ln}\left(\mathrm{2}\:+{sin}\theta\:{cos}\left({x}^{\mathrm{2}} \right)\right)−{ln}\left(\mathrm{2}+{sin}\theta\:{cosx}\right) \\ $$$$\frac{\partial{f}}{\partial\theta}\left({x},\theta\right)\:=\:\int_{{x}} ^{{x}^{\mathrm{2}} } \:\:\frac{{cost}\:{cos}\theta}{\mathrm{2}+{costsin}\theta}\:{dt}\:\:{ch}.\:{tan}\left(\frac{{t}}{\mathrm{2}}\right)={ugive} \\ $$$$\frac{\partial{f}}{\partial\theta}\:=\:\int_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)} ^{{tan}\left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)} \:\:\:\frac{{cos}\theta\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }}{\mathrm{2}+{sin}\theta\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }}\:\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$=\:\int_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)} ^{{tan}\left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)} \:\:\:\:\:\frac{\left(\mathrm{1}−{u}^{\mathrm{2}} \right){cos}\theta}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\mathrm{2}\:+\left(\mathrm{1}−{u}^{\mathrm{2}} \right){sin}\theta\right)}{du} \\ $$$$=\:\int_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)} ^{{tan}\left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)} \:\:\:\frac{\alpha\:−\alpha{u}^{\mathrm{2}} }{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\mathrm{2}+\beta\:−\beta{u}^{\mathrm{2}} \right)}\:{du}\:{whit}\:\alpha={cos}\theta \\ $$$${and}\:\beta={sin}\theta \\ $$$$=\int_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)} ^{{tan}\left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)\:\:} \:\:\:\:\:\frac{−\alpha{u}^{\mathrm{2}} \:+\alpha}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(−\beta{u}^{\mathrm{2}} +\beta+\mathrm{2}\right)}{du}\:{let}\:{decompose} \\ $$$${f}\left({u}\right)\:=\:\:\frac{\alpha{u}^{\mathrm{2}} \:−\alpha}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\beta{u}^{\mathrm{2}} −\beta−\mathrm{2}\right)} \\ $$$$=\:\:\frac{\alpha{u}^{\mathrm{2}} \:−\alpha}{\beta\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\:{u}^{\mathrm{2}} \:−\left(\sqrt{\frac{\beta+\mathrm{2}}{\beta}}\right)^{\mathrm{2}} \right)} \\ $$$$=\:\:\frac{{a}}{\left({u}−\sqrt{\frac{\beta+\mathrm{2}}{\beta}}\right)}\:\:+\frac{{b}}{{u}+\sqrt{\frac{\beta+\mathrm{2}}{\beta}}}\:\:+\:\frac{{cu}\:+{d}}{{u}^{\mathrm{2}} \:+\mathrm{1}}\:...{be} \\ $$$${conyinued}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com