Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 32364 by prof Abdo imad last updated on 23/Mar/18

let  u_n = (e −(1+(1/n))^n )^((√(n^2  +2))  −(√(n^2  +1)))   find  lim u_n

$${let}\:\:{u}_{{n}} =\:\left({e}\:−\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} \right)^{\sqrt{{n}^{\mathrm{2}} \:+\mathrm{2}}\:\:−\sqrt{{n}^{\mathrm{2}} \:+\mathrm{1}}} \\ $$$${find}\:\:{lim}\:{u}_{{n}} \\ $$

Commented by prof Abdo imad last updated on 06/Apr/18

we have A_n =(√(n^2  +2))  −(√(n^2  +1))  =n( (√(1+(2/n)))  −(√(1+(1/n)))  ) but  (√(1+(2/n))) ∼ 1+(1/n)  and (√(1+(1/n)))  ∼ 1+(1/(2n)) ⇒  A_n ∼ n+1 −n −(1/2) ⇒ A_n  ∼ (1/2)  also we have  (1+(1/n))^n  = e^(nln(1+(1/n)))   ln(1+x))^′  = (1/(1+x)) =1−x +o(x^2 ) for x∈V(o)  ln(1+x) = x −(x^2 /2) +o(x^3 ) ⇒  ln(1+(1/n)) = (1/n)  −(1/(2n^2 )) +o( (1/n^3 )) ⇒  nln(1+(1/n)) = 1 −(1/(2n)) +o((1/n^2 )) ⇒  e^(nln(1+(1/n)))   =e^(1−(1/(2n))  +o((1/n^2 )))  = e .(1−(1/(2n)) +o((1/n^2 )))⇒  e −(1 +(1/n))^n   ∼  (e/(2n)) +o( (1/n^2 )) ⇒ u_n  ∼(√( (e/(2n))))  ⇒  lim_(n→∞)  u_n  =0 .

$${we}\:{have}\:{A}_{{n}} =\sqrt{{n}^{\mathrm{2}} \:+\mathrm{2}}\:\:−\sqrt{{n}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$$={n}\left(\:\sqrt{\mathrm{1}+\frac{\mathrm{2}}{{n}}}\:\:−\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{n}}}\:\:\right)\:{but} \\ $$$$\sqrt{\mathrm{1}+\frac{\mathrm{2}}{{n}}}\:\sim\:\mathrm{1}+\frac{\mathrm{1}}{{n}}\:\:{and}\:\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{n}}}\:\:\sim\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}}\:\Rightarrow \\ $$$${A}_{{n}} \sim\:{n}+\mathrm{1}\:−{n}\:−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\:{A}_{{n}} \:\sim\:\frac{\mathrm{1}}{\mathrm{2}}\:\:{also}\:{we}\:{have} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} \:=\:{e}^{{nln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)} \\ $$$$\left.{ln}\left(\mathrm{1}+{x}\right)\right)^{'} \:=\:\frac{\mathrm{1}}{\mathrm{1}+{x}}\:=\mathrm{1}−{x}\:+{o}\left({x}^{\mathrm{2}} \right)\:{for}\:{x}\in{V}\left({o}\right) \\ $$$${ln}\left(\mathrm{1}+{x}\right)\:=\:{x}\:−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:+{o}\left({x}^{\mathrm{3}} \right)\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\:=\:\frac{\mathrm{1}}{{n}}\:\:−\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\:+{o}\left(\:\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\right)\:\Rightarrow \\ $$$${nln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\:=\:\mathrm{1}\:−\frac{\mathrm{1}}{\mathrm{2}{n}}\:+{o}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)\:\Rightarrow \\ $$$${e}^{{nln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)} \:\:={e}^{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{n}}\:\:+{o}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)} \:=\:{e}\:.\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{n}}\:+{o}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)\right)\Rightarrow \\ $$$${e}\:−\left(\mathrm{1}\:+\frac{\mathrm{1}}{{n}}\right)^{{n}} \:\:\sim\:\:\frac{{e}}{\mathrm{2}{n}}\:+{o}\left(\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)\:\Rightarrow\:{u}_{{n}} \:\sim\sqrt{\:\frac{{e}}{\mathrm{2}{n}}}\:\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow\infty} \:{u}_{{n}} \:=\mathrm{0}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com