All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 32478 by prof Abdo imad last updated on 25/Mar/18
find∫0∞ln(1+t2t2)dt
Commented by prof Abdo imad last updated on 30/Mar/18
I=∫0+∞ln(1+1t2)dtbypartsI=][tln(1+1t2)]0+∞−∫0+∞t−2t3(1+1t2)−1dt=2∫0∞1t2.11+1t2dt=2∫0∞dtt2+1=2π2=πletprovethatlimt→+∞tln(1+1t2)=0=limu→01uln(1+u2)=limu→∞uln(1+u2)u2=0alsolimt→otln(1+1t2)=limt→0tln(1+t2)−2tlnt=0finallyI=π
Terms of Service
Privacy Policy
Contact: info@tinkutara.com