Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32480 by prof Abdo imad last updated on 25/Mar/18

find  ∫_0 ^α  (√(tanx)) dx with 0<α<(π/2) .

find0αtanxdxwith0<α<π2.

Commented byprof Abdo imad last updated on 14/Apr/18

let put I  = ∫_0 ^α  (√(tanx)) dx  .changement (√(tanx)) =t  give x =arctan(t^2 )  and   I = ∫_0 ^(√(tanα))     t .((2tdt)/(1+t^4 ))  = ∫_0 ^(√(tanα))   ((2t^2 )/(1+t^4 )) dt  = (1/2) ∫_0 ^(√(tanα))  (1/t) ((4t^3 )/(1+t^4 )) dt  by parts u =(1/t) and  v^′  =  ((4t^3 )/(1+t^4 )) ⇒ I = [(1/t) ln(1+t^4 )]_0 ^(√(tanα))   − ∫_0 ^(√(tanα))   ((−1)/t^2 ) ln(1+t^4 ) dt  = (1/(√(tanα))) ln( 1 +tan^2 α) + ∫_0 ^(√(tanα))   ((ln(1+t^4 ))/t^2 ) dt  if  0< α< (π/4)  ⇒ 0<(√(tanα))<1  so let developp  ln(1+t^4 )  we have  ln(1 +u)^′  =Σ (−1)^n u^n   ln(1+u) =Σ _(n≥0) (((−1)^n u^(n+1) )/(n+1)) = Σ_(n=1) ^∞  (−1)^(n−1)  (u^n /n)  ln(1+x^4 ) = Σ_(n=1) ^∞  (−1)^(n−1)  (x^(4n) /n) ⇒   ((ln(1+t^4 ))/t^2 ) = Σ_(n=1) ^∞  (−1)^(n−1)  (t^(4n−2) /n) ⇒  ∫_0 ^(√(tanα))   ((ln(1+t^4 ))/t^2 ) dt = Σ_(n=1) ^∞  (((−1)^(n−1) )/n) ∫_0 ^(√(tanα))   t^(4n−2) dt  = Σ_(n=1) ^∞   (((−1)^(n−1) )/n) (1/(4n−1)) (tanα)^(2n−1)  let put  S(x) = Σ_(n=1) ^∞    (((−1)^(n−1) )/n) (1/(4n−1)) x^(2n−1)  let find S(x)  (1/4) S(x) = Σ_(n=1) ^∞    (((−1)^(n−1) )/((4n−1)(4n))) x^(2n−1)   = Σ_(n=1) ^∞    (−1)^(n−1) (  (1/(4n−1)) −(1/(4n))) x^(2n−1)   =Σ_(n=1) ^∞   (((−1)^(n−1) )/(4n−1)) x^(2n−1)    −(1/4) Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^(2n−1)   ...be continued...

letputI=0αtanxdx.changementtanx=t givex=arctan(t2)and I=0tanαt.2tdt1+t4=0tanα2t21+t4dt =120tanα1t4t31+t4dtbypartsu=1tand v=4t31+t4I=[1tln(1+t4)]0tanα 0tanα1t2ln(1+t4)dt =1tanαln(1+tan2α)+0tanαln(1+t4)t2dt if0<α<π40<tanα<1soletdevelopp ln(1+t4)wehaveln(1+u)=Σ(1)nun ln(1+u)=Σn0(1)nun+1n+1=n=1(1)n1unn ln(1+x4)=n=1(1)n1x4nn ln(1+t4)t2=n=1(1)n1t4n2n 0tanαln(1+t4)t2dt=n=1(1)n1n0tanαt4n2dt =n=1(1)n1n14n1(tanα)2n1letput S(x)=n=1(1)n1n14n1x2n1letfindS(x) 14S(x)=n=1(1)n1(4n1)(4n)x2n1 =n=1(1)n1(14n114n)x2n1 =n=1(1)n14n1x2n114n=1(1)n1nx2n1 ...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com