All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 32480 by prof Abdo imad last updated on 25/Mar/18
find∫0αtanxdxwith0<α<π2.
Commented byprof Abdo imad last updated on 14/Apr/18
letputI=∫0αtanxdx.changementtanx=t givex=arctan(t2)and I=∫0tanαt.2tdt1+t4=∫0tanα2t21+t4dt =12∫0tanα1t4t31+t4dtbypartsu=1tand v′=4t31+t4⇒I=[1tln(1+t4)]0tanα −∫0tanα−1t2ln(1+t4)dt =1tanαln(1+tan2α)+∫0tanαln(1+t4)t2dt if0<α<π4⇒0<tanα<1soletdevelopp ln(1+t4)wehaveln(1+u)′=Σ(−1)nun ln(1+u)=Σn⩾0(−1)nun+1n+1=∑n=1∞(−1)n−1unn ln(1+x4)=∑n=1∞(−1)n−1x4nn⇒ ln(1+t4)t2=∑n=1∞(−1)n−1t4n−2n⇒ ∫0tanαln(1+t4)t2dt=∑n=1∞(−1)n−1n∫0tanαt4n−2dt =∑n=1∞(−1)n−1n14n−1(tanα)2n−1letput S(x)=∑n=1∞(−1)n−1n14n−1x2n−1letfindS(x) 14S(x)=∑n=1∞(−1)n−1(4n−1)(4n)x2n−1 =∑n=1∞(−1)n−1(14n−1−14n)x2n−1 =∑n=1∞(−1)n−14n−1x2n−1−14∑n=1∞(−1)n−1nx2n−1 ...becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com