Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32483 by prof Abdo imad last updated on 25/Mar/18

calculate ∫_0 ^(2π)     (dx/(1+2cosx)) .

calculate02πdx1+2cosx.

Commented by prof Abdo imad last updated on 26/Mar/18

let put  I = ∫_0 ^(2π)   (dx/(1+2cosx)) the ch. x=π +t  give  I  = ∫_(−π) ^π       (dt/(1−2cost))  = 2 ∫_0 ^π     (dt/(1−2cost))  and the  ch. tan((t/2))=u hive  I  = 2 ∫_0 ^(+∞)     (1/(1−2((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))  = 4 ∫_0 ^∞      (du/(1+u^2  −2 +2u^2 )) = 4∫_0 ^∞    (du/(3u^2  −1))  = 4 ∫_0 ^∞    (du/(((√3) u +1)((√3) −1)))  =2 ∫_0 ^∞   ( (1/((√3) t −1)) −(1/((√3) t+1)))du  =(2/(√3))[ ln∣(((√3)t−1)/((√3)t +1))∣]_0 ^(+∞)  =0  I =0

letputI=02πdx1+2cosxthech.x=π+tgiveI=ππdt12cost=20πdt12costandthech.tan(t2)=uhiveI=20+1121u21+u22du1+u2=40du1+u22+2u2=40du3u21=40du(3u+1)(31)=20(13t113t+1)du=23[ln3t13t+1]0+=0I=0

Commented by prof Abdo imad last updated on 26/Mar/18

method of residus ch. e^(ix) =z give  I =∫_(∣z∣=1)   (1/(1+2 ((z+z^(−1) )/2))) (dz/(iz))  = ∫_(∣z∣=1)     (dz/(iz(1+z+z^(−1) ))) =∫_(∣z∣=1)    ((−idz)/(z +z^2  +1))  = ∫_(∣z∣=1)   ((−idz)/(z^2  +z +1)) let imtroduce the complex  function ϕ(z)=   ((−idz)/(z^2  +z +1)) .poles of ϕ?  z^2  +z +1=0 ⇒ Δ=1−4=−3=(i(√3))^2   z_1 =((−1 +i(√3))/2) =j and z_2 =((−1−i(√3))/2) =j^−   ∣z_1 ∣=1 and ∣z_2 ∣=1 so  ∫_(∣z∣=1)   ϕ(z)dz =2iπ( Res(ϕ,z_1 ) +Res(ϕ,z_2 ))  but we have ϕ(z) = ((−i)/((z−z_1 )(z−z_2 )))  Res(ϕ,z_1 ) = ((−i)/(z_1  −z_2 )) = ((−i)/(i(√3))) = ((−1)/(√3))  Res(ϕ,z_2 ) = ((−i)/(z_2  −z_1 )) = ((−i)/(−i(√3))) = (1/(√3))  ∫_(∣z∣=1)  ϕ(z)dz = 2iπ( ((−1)/(√3)) +(1/(√3)))=0  ⇒ I =0

methodofresidusch.eix=zgiveI=z∣=111+2z+z12dziz=z∣=1dziz(1+z+z1)=z∣=1idzz+z2+1=z∣=1idzz2+z+1letimtroducethecomplexfunctionφ(z)=idzz2+z+1.polesofφ?z2+z+1=0Δ=14=3=(i3)2z1=1+i32=jandz2=1i32=jz1∣=1andz2∣=1soz∣=1φ(z)dz=2iπ(Res(φ,z1)+Res(φ,z2))butwehaveφ(z)=i(zz1)(zz2)Res(φ,z1)=iz1z2=ii3=13Res(φ,z2)=iz2z1=ii3=13z∣=1φ(z)dz=2iπ(13+13)=0I=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com