All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 32483 by prof Abdo imad last updated on 25/Mar/18
calculate∫02πdx1+2cosx.
Commented by prof Abdo imad last updated on 26/Mar/18
letputI=∫02πdx1+2cosxthech.x=π+tgiveI=∫−ππdt1−2cost=2∫0πdt1−2costandthech.tan(t2)=uhiveI=2∫0+∞11−21−u21+u22du1+u2=4∫0∞du1+u2−2+2u2=4∫0∞du3u2−1=4∫0∞du(3u+1)(3−1)=2∫0∞(13t−1−13t+1)du=23[ln∣3t−13t+1∣]0+∞=0I=0
methodofresidusch.eix=zgiveI=∫∣z∣=111+2z+z−12dziz=∫∣z∣=1dziz(1+z+z−1)=∫∣z∣=1−idzz+z2+1=∫∣z∣=1−idzz2+z+1letimtroducethecomplexfunctionφ(z)=−idzz2+z+1.polesofφ?z2+z+1=0⇒Δ=1−4=−3=(i3)2z1=−1+i32=jandz2=−1−i32=j−∣z1∣=1and∣z2∣=1so∫∣z∣=1φ(z)dz=2iπ(Res(φ,z1)+Res(φ,z2))butwehaveφ(z)=−i(z−z1)(z−z2)Res(φ,z1)=−iz1−z2=−ii3=−13Res(φ,z2)=−iz2−z1=−i−i3=13∫∣z∣=1φ(z)dz=2iπ(−13+13)=0⇒I=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com