All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 32484 by Eng.Firas last updated on 25/Mar/18
∫12∫01ln(x+y)(x+y)dxdy
Commented by abdo imad last updated on 26/Mar/18
I=∫12(∫01ln(x+y)x+ydx)dyletputA=∫01ln(x+y)x+ydxch.x+y=tgiveA=∫y1+ylnttdt=[12(lnt)2]y1+y=12((ln(1+y)2−(lny)2)⇒I=12∫12(ln(1+y))2dy−12∫12((lny))2dybutch.lny=tgive∫12(lny)2dy=∫0ln(2)t2etdt=[t2et]0ln(2)−∫0ln(2)2tetdt=2(ln2)2−2([tet]0ln(2)−∫0ln(2)etdt)=2(ln2)2−2(2ln2−1)=2(ln2)2−4ln(2)+1alsoch.ln(1+y)=tgive∫12(ln(1+y))2dy=∫ln2ln(3)t2etdtandwegetthevalueofthisintevralbythesamemethod.....
Commented by Eng.Firas last updated on 26/Mar/18
Thankyou
Terms of Service
Privacy Policy
Contact: info@tinkutara.com