Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 32485 by abdo imad last updated on 25/Mar/18

let give α>1 find lim_(n→∞)   Σ_(k=n+1) ^(2n)   (1/k^α ) .

$${let}\:{give}\:\alpha>\mathrm{1}\:{find}\:{lim}_{{n}\rightarrow\infty} \:\:\sum_{{k}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \:\:\frac{\mathrm{1}}{{k}^{\alpha} }\:. \\ $$

Commented byabdo imad last updated on 28/Mar/18

let put S_n = Σ_(k=n+1) ^(2n)  (1/k^α )  S_n = (1/((n+1)^α ))  +(1/((n+2)^α )) + ...+(1/((2n)^α ))  =ξ_(2n) (α) −ξ_n (α) with ξ_n (x)=Σ_(k=1) ^n  (1/k^x ) but lim_(n→∞) ξ_(2n) (α)=ξ(α)  and lim_(n→∞)  ξ_n (α)=ξ(α) ⇒ lim_(n→∞)  S_n =0  anther method  we have    n+1 ≤ k≤ 2n ⇒ (1/(2n))≤ (1/k) ≤ (1/(n+1))≤ (1/n) ⇒  (1/((2n)^α )) ≤  (1/k^α ) ≤  (1/n^α ) ⇒  (n/((2n)^α )) ≤ Σ_(k=n+1) ^(2n)  (1/k^α ) ≤  (n/n^α ) ⇒   (1/(2^α  n^(α−1) )) ≤  S_n  ≤  (1/n^(α−1) )  but α>1 ⇒ lim_(n→∞) (1/(2^α  n^(α−1) )) =0 and  lim_(n→∞)  (1/n^(α−1) )  = 0  ⇒ lim_(n→∞)  S_n =0

$${let}\:{put}\:{S}_{{n}} =\:\sum_{{k}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \:\frac{\mathrm{1}}{{k}^{\alpha} } \\ $$ $${S}_{{n}} =\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\alpha} }\:\:+\frac{\mathrm{1}}{\left({n}+\mathrm{2}\right)^{\alpha} }\:+\:...+\frac{\mathrm{1}}{\left(\mathrm{2}{n}\right)^{\alpha} } \\ $$ $$=\xi_{\mathrm{2}{n}} \left(\alpha\right)\:−\xi_{{n}} \left(\alpha\right)\:{with}\:\xi_{{n}} \left({x}\right)=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}^{{x}} }\:{but}\:{lim}_{{n}\rightarrow\infty} \xi_{\mathrm{2}{n}} \left(\alpha\right)=\xi\left(\alpha\right) \\ $$ $${and}\:{lim}_{{n}\rightarrow\infty} \:\xi_{{n}} \left(\alpha\right)=\xi\left(\alpha\right)\:\Rightarrow\:{lim}_{{n}\rightarrow\infty} \:{S}_{{n}} =\mathrm{0} \\ $$ $${anther}\:{method} \\ $$ $${we}\:{have}\:\:\:\:{n}+\mathrm{1}\:\leqslant\:{k}\leqslant\:\mathrm{2}{n}\:\Rightarrow\:\frac{\mathrm{1}}{\mathrm{2}{n}}\leqslant\:\frac{\mathrm{1}}{{k}}\:\leqslant\:\frac{\mathrm{1}}{{n}+\mathrm{1}}\leqslant\:\frac{\mathrm{1}}{{n}}\:\Rightarrow \\ $$ $$\frac{\mathrm{1}}{\left(\mathrm{2}{n}\right)^{\alpha} }\:\leqslant\:\:\frac{\mathrm{1}}{{k}^{\alpha} }\:\leqslant\:\:\frac{\mathrm{1}}{{n}^{\alpha} }\:\Rightarrow\:\:\frac{{n}}{\left(\mathrm{2}{n}\right)^{\alpha} }\:\leqslant\:\sum_{{k}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \:\frac{\mathrm{1}}{{k}^{\alpha} }\:\leqslant\:\:\frac{{n}}{{n}^{\alpha} }\:\Rightarrow \\ $$ $$\:\frac{\mathrm{1}}{\mathrm{2}^{\alpha} \:{n}^{\alpha−\mathrm{1}} }\:\leqslant\:\:{S}_{{n}} \:\leqslant\:\:\frac{\mathrm{1}}{{n}^{\alpha−\mathrm{1}} }\:\:{but}\:\alpha>\mathrm{1}\:\Rightarrow\:{lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}}{\mathrm{2}^{\alpha} \:{n}^{\alpha−\mathrm{1}} }\:=\mathrm{0}\:{and} \\ $$ $${lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}}{{n}^{\alpha−\mathrm{1}} }\:\:=\:\mathrm{0}\:\:\Rightarrow\:{lim}_{{n}\rightarrow\infty} \:{S}_{{n}} =\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com