Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 32486 by abdo imad last updated on 25/Mar/18

find lim_(n→∞)    Σ_(k=n+1) ^(2n)  sin((1/k)).

$${find}\:{lim}_{{n}\rightarrow\infty} \:\:\:\sum_{{k}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \:{sin}\left(\frac{\mathrm{1}}{{k}}\right). \\ $$

Commented by abdo imad last updated on 26/Mar/18

let put S_n = Σ_(k=n+1) ^(2n) sin((1/k))we know that   x−(x^3 /6) ≤sinx≤ x ⇒  (1/k) − (1/(6k^3 )) ≤ sin((1/k))≤ (1/k) ⇒ Σ_(k=n+1) ^(2n)  (1/k) −(1/6)Σ_(k=n+1) ^(2n)  (1/k^3 )≤S_n ≤ Σ_(k=n+1) ^(2n) (1/k)  but Σ_(k=n+1) ^(2n)  (1/k) =(1/(n+1)) +(1/(n+2)) +.....(1/(2n)) =H_(2n)  −H_n   H_(2n) =ln(2n) +γ +o(1)  H_n =ln(n) +γ +o(1) ⇒ H_(2n) −H_n =ln(((2n)/n)) + o(1)⇒  lim_(n→∞) H_(2n)  −H_n =ln(2) also we have  n+1≤k≤2n ⇒  (1/(2n))≤ (1/k) ≤ (1/(n+1)) ⇒ (1/(8n^3 )) ≤ (1/k^3 ) ≤  (1/n^3 ) ⇒   (n/(8n^3 )) ≤ Σ_(k=n+1) ^(2n)  (1/k^3 )≤ (n/n^3 ) ⇒ (1/(8n^2 )) ≤Σ_(k=n+1) ^(2n)  (1/k^3 ) ≤(1/n^2 ) ⇒  lim_(n→∞) Σ_(k=n+1) ^(2n)  (1/k^3 ) =0 so  lim_(n→∞)  S_n  =ln(2) .

$${let}\:{put}\:{S}_{{n}} =\:\sum_{{k}={n}+\mathrm{1}} ^{\mathrm{2}{n}} {sin}\left(\frac{\mathrm{1}}{{k}}\right){we}\:{know}\:{that}\:\:\:{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\:\leqslant{sinx}\leqslant\:{x}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{{k}}\:−\:\frac{\mathrm{1}}{\mathrm{6}{k}^{\mathrm{3}} }\:\leqslant\:{sin}\left(\frac{\mathrm{1}}{{k}}\right)\leqslant\:\frac{\mathrm{1}}{{k}}\:\Rightarrow\:\sum_{{k}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \:\frac{\mathrm{1}}{{k}}\:−\frac{\mathrm{1}}{\mathrm{6}}\sum_{{k}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \:\frac{\mathrm{1}}{{k}^{\mathrm{3}} }\leqslant{S}_{{n}} \leqslant\:\sum_{{k}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \frac{\mathrm{1}}{{k}} \\ $$$${but}\:\sum_{{k}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \:\frac{\mathrm{1}}{{k}}\:=\frac{\mathrm{1}}{{n}+\mathrm{1}}\:+\frac{\mathrm{1}}{{n}+\mathrm{2}}\:+.....\frac{\mathrm{1}}{\mathrm{2}{n}}\:={H}_{\mathrm{2}{n}} \:−{H}_{{n}} \\ $$$${H}_{\mathrm{2}{n}} ={ln}\left(\mathrm{2}{n}\right)\:+\gamma\:+{o}\left(\mathrm{1}\right) \\ $$$${H}_{{n}} ={ln}\left({n}\right)\:+\gamma\:+{o}\left(\mathrm{1}\right)\:\Rightarrow\:{H}_{\mathrm{2}{n}} −{H}_{{n}} ={ln}\left(\frac{\mathrm{2}{n}}{{n}}\right)\:+\:{o}\left(\mathrm{1}\right)\Rightarrow \\ $$$${lim}_{{n}\rightarrow\infty} {H}_{\mathrm{2}{n}} \:−{H}_{{n}} ={ln}\left(\mathrm{2}\right)\:{also}\:{we}\:{have}\:\:{n}+\mathrm{1}\leqslant{k}\leqslant\mathrm{2}{n}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{n}}\leqslant\:\frac{\mathrm{1}}{{k}}\:\leqslant\:\frac{\mathrm{1}}{{n}+\mathrm{1}}\:\Rightarrow\:\frac{\mathrm{1}}{\mathrm{8}{n}^{\mathrm{3}} }\:\leqslant\:\frac{\mathrm{1}}{{k}^{\mathrm{3}} }\:\leqslant\:\:\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:\Rightarrow \\ $$$$\:\frac{{n}}{\mathrm{8}{n}^{\mathrm{3}} }\:\leqslant\:\sum_{{k}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \:\frac{\mathrm{1}}{{k}^{\mathrm{3}} }\leqslant\:\frac{{n}}{{n}^{\mathrm{3}} }\:\Rightarrow\:\frac{\mathrm{1}}{\mathrm{8}{n}^{\mathrm{2}} }\:\leqslant\sum_{{k}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \:\frac{\mathrm{1}}{{k}^{\mathrm{3}} }\:\leqslant\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow\infty} \sum_{{k}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \:\frac{\mathrm{1}}{{k}^{\mathrm{3}} }\:=\mathrm{0}\:{so}\:\:{lim}_{{n}\rightarrow\infty} \:{S}_{{n}} \:={ln}\left(\mathrm{2}\right)\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com