Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 32508 by Tinkutara last updated on 26/Mar/18

Answered by MJS last updated on 27/Mar/18

there are 2 tangents of different  lengths but none of these answers  fit any of them...  ellipse: y=±(b/a)(√(a^2 −x^2 ))  tangent in point  ((o),((±(b/a)(√(a^2 −o^2 )))) ):  t: y=∓((bo)/(a(√(a^2 −o^2 ))))×x±((ab)/(√(a^2 −o^2 )))  tangents through given point  P= ((p),(q) ): solve above equations  for o with x=p∧y=q  in this case:  a=(√3); b=2; p=3; q=−5  −5=∓((2o)/((√3)(√(3−o^2 ))))×3±((2(√3))/(√(3−o^2 )))  o_(1 (y<0)) =((12)/(37))−((15(√(11)))/(37))  o_(2 (y>0)) =((12)/(37))+((15(√(11)))/(37))  the tangents:  t_1 : y=−((5/2)−((√(11))/2))×x+((5/2)−((3(√(11)))/2))  t_2 : y=−((5/2)+((√(11))/2))×x+((5/2)+((3(√(11)))/2))  the 2 points of the ellipse are:  O_1 = (((((12)/(37))−((15(√(11)))/(37)))),((−((20)/(37))−((12(√(11)))/(37)))) )  O_2 = (((((12)/(37))+((15(√(11)))/(37)))),((−((20)/(37))+((12(√(11)))/(37)))) )  distances to P= ((3),((−5)) )  ∣P−O_1 ∣=(3/(37))(√(55(83−2(√(11)))))≈5.25  ∣P−O_2 ∣=(3/(37))(√(55(83+2(√(11)))))≈5.69  the options are:  ((√(17))/2)≈2.06  ((√(33))/2)≈2.87  ((√(37))/2)≈3.04  ((√(19))/2)≈2.18

$$\mathrm{there}\:\mathrm{are}\:\mathrm{2}\:\mathrm{tangents}\:\mathrm{of}\:\mathrm{different} \\ $$$$\mathrm{lengths}\:\mathrm{but}\:\mathrm{none}\:\mathrm{of}\:\mathrm{these}\:\mathrm{answers} \\ $$$$\mathrm{fit}\:\mathrm{any}\:\mathrm{of}\:\mathrm{them}... \\ $$$$\mathrm{ellipse}:\:{y}=\pm\frac{{b}}{{a}}\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} } \\ $$$$\mathrm{tangent}\:\mathrm{in}\:\mathrm{point}\:\begin{pmatrix}{{o}}\\{\pm\frac{{b}}{{a}}\sqrt{{a}^{\mathrm{2}} −{o}^{\mathrm{2}} }}\end{pmatrix}: \\ $$$${t}:\:{y}=\mp\frac{{bo}}{{a}\sqrt{{a}^{\mathrm{2}} −{o}^{\mathrm{2}} }}×{x}\pm\frac{{ab}}{\sqrt{{a}^{\mathrm{2}} −{o}^{\mathrm{2}} }} \\ $$$$\mathrm{tangents}\:\mathrm{through}\:\mathrm{given}\:\mathrm{point} \\ $$$${P}=\begin{pmatrix}{{p}}\\{{q}}\end{pmatrix}:\:\mathrm{solve}\:\mathrm{above}\:\mathrm{equations} \\ $$$$\mathrm{for}\:{o}\:\mathrm{with}\:{x}={p}\wedge{y}={q} \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{case}: \\ $$$${a}=\sqrt{\mathrm{3}};\:{b}=\mathrm{2};\:{p}=\mathrm{3};\:{q}=−\mathrm{5} \\ $$$$−\mathrm{5}=\mp\frac{\mathrm{2o}}{\sqrt{\mathrm{3}}\sqrt{\mathrm{3}−{o}^{\mathrm{2}} }}×\mathrm{3}\pm\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\sqrt{\mathrm{3}−{o}^{\mathrm{2}} }} \\ $$$${o}_{\mathrm{1}\:\left({y}<\mathrm{0}\right)} =\frac{\mathrm{12}}{\mathrm{37}}−\frac{\mathrm{15}\sqrt{\mathrm{11}}}{\mathrm{37}} \\ $$$${o}_{\mathrm{2}\:\left({y}>\mathrm{0}\right)} =\frac{\mathrm{12}}{\mathrm{37}}+\frac{\mathrm{15}\sqrt{\mathrm{11}}}{\mathrm{37}} \\ $$$$\mathrm{the}\:\mathrm{tangents}: \\ $$$${t}_{\mathrm{1}} :\:{y}=−\left(\frac{\mathrm{5}}{\mathrm{2}}−\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\right)×{x}+\left(\frac{\mathrm{5}}{\mathrm{2}}−\frac{\mathrm{3}\sqrt{\mathrm{11}}}{\mathrm{2}}\right) \\ $$$${t}_{\mathrm{2}} :\:{y}=−\left(\frac{\mathrm{5}}{\mathrm{2}}+\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\right)×{x}+\left(\frac{\mathrm{5}}{\mathrm{2}}+\frac{\mathrm{3}\sqrt{\mathrm{11}}}{\mathrm{2}}\right) \\ $$$$\mathrm{the}\:\mathrm{2}\:\mathrm{points}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ellipse}\:\mathrm{are}: \\ $$$${O}_{\mathrm{1}} =\begin{pmatrix}{\frac{\mathrm{12}}{\mathrm{37}}−\frac{\mathrm{15}\sqrt{\mathrm{11}}}{\mathrm{37}}}\\{−\frac{\mathrm{20}}{\mathrm{37}}−\frac{\mathrm{12}\sqrt{\mathrm{11}}}{\mathrm{37}}}\end{pmatrix} \\ $$$${O}_{\mathrm{2}} =\begin{pmatrix}{\frac{\mathrm{12}}{\mathrm{37}}+\frac{\mathrm{15}\sqrt{\mathrm{11}}}{\mathrm{37}}}\\{−\frac{\mathrm{20}}{\mathrm{37}}+\frac{\mathrm{12}\sqrt{\mathrm{11}}}{\mathrm{37}}}\end{pmatrix} \\ $$$$\mathrm{distances}\:\mathrm{to}\:{P}=\begin{pmatrix}{\mathrm{3}}\\{−\mathrm{5}}\end{pmatrix} \\ $$$$\mid{P}−\mathrm{O}_{\mathrm{1}} \mid=\frac{\mathrm{3}}{\mathrm{37}}\sqrt{\mathrm{55}\left(\mathrm{83}−\mathrm{2}\sqrt{\mathrm{11}}\right)}\approx\mathrm{5}.\mathrm{25} \\ $$$$\mid{P}−\mathrm{O}_{\mathrm{2}} \mid=\frac{\mathrm{3}}{\mathrm{37}}\sqrt{\mathrm{55}\left(\mathrm{83}+\mathrm{2}\sqrt{\mathrm{11}}\right)}\approx\mathrm{5}.\mathrm{69} \\ $$$$\mathrm{the}\:\mathrm{options}\:\mathrm{are}: \\ $$$$\frac{\sqrt{\mathrm{17}}}{\mathrm{2}}\approx\mathrm{2}.\mathrm{06} \\ $$$$\frac{\sqrt{\mathrm{33}}}{\mathrm{2}}\approx\mathrm{2}.\mathrm{87} \\ $$$$\frac{\sqrt{\mathrm{37}}}{\mathrm{2}}\approx\mathrm{3}.\mathrm{04} \\ $$$$\frac{\sqrt{\mathrm{19}}}{\mathrm{2}}\approx\mathrm{2}.\mathrm{18} \\ $$

Commented by Tinkutara last updated on 27/Mar/18

Commented by Tinkutara last updated on 27/Mar/18

@MJS you are right. Graphing calculator confirms your answer. Thank you Sir! ��������

Terms of Service

Privacy Policy

Contact: info@tinkutara.com