Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 32563 by rahul 19 last updated on 27/Mar/18

The set of values of ′a′ for which   all the solutions of the equation  4sin^4 x+asin^2 x+3=0 are real and   distinct is ?

$$\boldsymbol{{T}}{he}\:{set}\:{of}\:{values}\:{of}\:'{a}'\:{for}\:{which}\: \\ $$$${all}\:{the}\:{solutions}\:{of}\:{the}\:{equation} \\ $$$$\mathrm{4sin}\:^{\mathrm{4}} {x}+{a}\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{3}=\mathrm{0}\:{are}\:{real}\:{and}\: \\ $$$${distinct}\:{is}\:? \\ $$

Commented by rahul 19 last updated on 27/Mar/18

i tried doing the same procedure  as in Ques. No. 32220.

$${i}\:{tried}\:{doing}\:{the}\:{same}\:{procedure} \\ $$$${as}\:{in}\:{Ques}.\:{No}.\:\mathrm{32220}. \\ $$

Commented by rahul 19 last updated on 27/Mar/18

Correct ans. is [−7,−4(√3)).

$${Correct}\:{ans}.\:{is}\:\left[−\mathrm{7},−\mathrm{4}\sqrt{\mathrm{3}}\right). \\ $$

Answered by rahul 19 last updated on 28/Mar/18

D≥0  a^2 ≥48  ⇒a≥4(√3) and a≤−4(√3)  Now let sin^2 x=t  ⇒4t^2 +at+3=0  ⇒f(0).f(1)<0  ⇒3×(7+a)<0  ⇒a<−7.  What′s wrong with  my solution?

$${D}\geqslant\mathrm{0} \\ $$$${a}^{\mathrm{2}} \geqslant\mathrm{48} \\ $$$$\Rightarrow{a}\geqslant\mathrm{4}\sqrt{\mathrm{3}}\:{and}\:{a}\leqslant−\mathrm{4}\sqrt{\mathrm{3}} \\ $$$${Now}\:{let}\:{sin}^{\mathrm{2}} {x}={t} \\ $$$$\Rightarrow\mathrm{4}{t}^{\mathrm{2}} +{at}+\mathrm{3}=\mathrm{0} \\ $$$$\Rightarrow{f}\left(\mathrm{0}\right).{f}\left(\mathrm{1}\right)<\mathrm{0} \\ $$$$\Rightarrow\mathrm{3}×\left(\mathrm{7}+{a}\right)<\mathrm{0} \\ $$$$\Rightarrow{a}<−\mathrm{7}. \\ $$$$\boldsymbol{{W}}{hat}'{s}\:{wrong}\:{with}\:\:{my}\:{solution}? \\ $$

Commented by rahul 19 last updated on 29/Mar/18

what does ∨, ∧ means in your  solution?

$${what}\:{does}\:\vee,\:\wedge\:{means}\:{in}\:{your} \\ $$$${solution}? \\ $$

Commented by MJS last updated on 29/Mar/18

I found it was off topic  look below

$$\mathrm{I}\:\mathrm{found}\:\mathrm{it}\:\mathrm{was}\:\mathrm{off}\:\mathrm{topic} \\ $$$$\mathrm{look}\:\mathrm{below} \\ $$

Commented by MJS last updated on 29/Mar/18

∧=“and”  ∨=“or”

$$\wedge=``{and}'' \\ $$$$\vee=``{or}'' \\ $$

Answered by MJS last updated on 28/Mar/18

s^2 +(a/4)s+(3/4)=0  exactly 1 solution:  (s−s_0 )^2 =s^2 −2s_0 s+s_0 ^2   −2s_0 =(a/4) ∧ s_0 ^2 =(3/4)  (a=4(√3) ∧ s=−((√3)/2)) ∨ (a=−4(√3) ∧ s=((√3)/2))  BUT:  t^4 +(a/4)t^2 +(3/4)=0 ⇒ t=(√s) ⇒ s≥0  ⇒ a=−4(√3) ∧ s=((√3)/2) ∧ t=±(((3)^(1/4) (√2))/2)  this shows that the equation  f(x)=4sin^4 x−4(√3)sin^2 x+3 has  exactly 1 solution in [0;(π/2)]  with a>−4(√3) it has none  with −7≤a<−4(√3) it has 2  with a<−7 it has 1 again  a→−∞ ⇒ x_0 →0 but f(0)=3∀a∈R

$${s}^{\mathrm{2}} +\frac{{a}}{\mathrm{4}}{s}+\frac{\mathrm{3}}{\mathrm{4}}=\mathrm{0} \\ $$$$\mathrm{exactly}\:\mathrm{1}\:\mathrm{solution}: \\ $$$$\left({s}−{s}_{\mathrm{0}} \right)^{\mathrm{2}} ={s}^{\mathrm{2}} −\mathrm{2}{s}_{\mathrm{0}} {s}+{s}_{\mathrm{0}} ^{\mathrm{2}} \\ $$$$−\mathrm{2}{s}_{\mathrm{0}} =\frac{{a}}{\mathrm{4}}\:\wedge\:{s}_{\mathrm{0}} ^{\mathrm{2}} =\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\left({a}=\mathrm{4}\sqrt{\mathrm{3}}\:\wedge\:{s}=−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\:\vee\:\left({a}=−\mathrm{4}\sqrt{\mathrm{3}}\:\wedge\:{s}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$\mathrm{BUT}: \\ $$$${t}^{\mathrm{4}} +\frac{{a}}{\mathrm{4}}{t}^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}=\mathrm{0}\:\Rightarrow\:{t}=\sqrt{{s}}\:\Rightarrow\:{s}\geqslant\mathrm{0} \\ $$$$\Rightarrow\:{a}=−\mathrm{4}\sqrt{\mathrm{3}}\:\wedge\:{s}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\wedge\:{t}=\pm\frac{\sqrt[{\mathrm{4}}]{\mathrm{3}}\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\mathrm{this}\:\mathrm{shows}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation} \\ $$$${f}\left({x}\right)=\mathrm{4sin}^{\mathrm{4}} {x}−\mathrm{4}\sqrt{\mathrm{3}}\mathrm{sin}^{\mathrm{2}} {x}+\mathrm{3}\:\mathrm{has} \\ $$$$\mathrm{exactly}\:\mathrm{1}\:\mathrm{solution}\:\mathrm{in}\:\left[\mathrm{0};\frac{\pi}{\mathrm{2}}\right] \\ $$$$\mathrm{with}\:{a}>−\mathrm{4}\sqrt{\mathrm{3}}\:\mathrm{it}\:\mathrm{has}\:\mathrm{none} \\ $$$$\mathrm{with}\:−\mathrm{7}\leqslant{a}<−\mathrm{4}\sqrt{\mathrm{3}}\:\mathrm{it}\:\mathrm{has}\:\mathrm{2} \\ $$$$\mathrm{with}\:{a}<−\mathrm{7}\:\mathrm{it}\:\mathrm{has}\:\mathrm{1}\:\mathrm{again} \\ $$$${a}\rightarrow−\infty\:\Rightarrow\:{x}_{\mathrm{0}} \rightarrow\mathrm{0}\:\mathrm{but}\:{f}\left(\mathrm{0}\right)=\mathrm{3}\forall{a}\in\mathbb{R} \\ $$

Commented by rahul 19 last updated on 28/Mar/18

sir pls check my method.

$${sir}\:{pls}\:{check}\:{my}\:{method}. \\ $$

Commented by MJS last updated on 29/Mar/18

your method is ok but the  conclusions might be wrong  in qu.32220 we were looking  for solutions, here we′re looking  for all distinct solutions, so there  must be 4 in [0;π]  it seems difficult to understand  the nature of the connection  between the functions  f(x)=c_1 sin^4 x+c_2 sin^2 x+c_3   g(s)=c_1 s^4 +c_2 s^2 +c_3   h(t)=c_1 t^2 +c_2 t+c_3   you should draw them or plot  them, if possible.

$$\mathrm{your}\:\mathrm{method}\:\mathrm{is}\:\mathrm{ok}\:\mathrm{but}\:\mathrm{the} \\ $$$$\mathrm{conclusions}\:\mathrm{might}\:\mathrm{be}\:\mathrm{wrong} \\ $$$$\mathrm{in}\:\mathrm{qu}.\mathrm{32220}\:\mathrm{we}\:\mathrm{were}\:\mathrm{looking} \\ $$$$\mathrm{for}\:\mathrm{solutions},\:\mathrm{here}\:\mathrm{we}'\mathrm{re}\:\mathrm{looking} \\ $$$$\mathrm{for}\:\boldsymbol{\mathrm{all}}\:\boldsymbol{\mathrm{distinct}}\:\mathrm{solutions},\:\mathrm{so}\:\mathrm{there} \\ $$$$\mathrm{must}\:\mathrm{be}\:\mathrm{4}\:\mathrm{in}\:\left[\mathrm{0};\pi\right] \\ $$$$\mathrm{it}\:\mathrm{seems}\:\mathrm{difficult}\:\mathrm{to}\:\mathrm{understand} \\ $$$$\mathrm{the}\:\mathrm{nature}\:\mathrm{of}\:\mathrm{the}\:\mathrm{connection} \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{functions} \\ $$$${f}\left({x}\right)={c}_{\mathrm{1}} \mathrm{sin}^{\mathrm{4}} {x}+{c}_{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} {x}+{c}_{\mathrm{3}} \\ $$$${g}\left({s}\right)={c}_{\mathrm{1}} {s}^{\mathrm{4}} +{c}_{\mathrm{2}} {s}^{\mathrm{2}} +{c}_{\mathrm{3}} \\ $$$${h}\left({t}\right)={c}_{\mathrm{1}} {t}^{\mathrm{2}} +{c}_{\mathrm{2}} {t}+{c}_{\mathrm{3}} \\ $$$$\mathrm{you}\:\mathrm{should}\:\mathrm{draw}\:\mathrm{them}\:\mathrm{or}\:\mathrm{plot} \\ $$$$\mathrm{them},\:\mathrm{if}\:\mathrm{possible}. \\ $$

Commented by MJS last updated on 29/Mar/18

Commented by MJS last updated on 29/Mar/18

Commented by MJS last updated on 29/Mar/18

Commented by MJS last updated on 29/Mar/18

we′re losing important information:  1. picture  4sin^4 x−4(√3)sin^2 x+3  4sin^4 x−7sin^2 x+3  [(π/4);((3π)/4)]  2. picture  4s^4 −4(√3)s^2 +3  4s^4 −7s^2 +3  [((√2)/2); 1.11^((∗)) ]  3. picture  4t^2 −4(√3)t+3  4t^2 −7t+3  [((√2)/2); 1.02^((∗)) ]    (∗) upper borders chosen for  symmetry of pics

$$\mathrm{we}'\mathrm{re}\:\mathrm{losing}\:\mathrm{important}\:\mathrm{information}: \\ $$$$\mathrm{1}.\:\mathrm{picture} \\ $$$$\mathrm{4sin}^{\mathrm{4}} {x}−\mathrm{4}\sqrt{\mathrm{3}}\mathrm{sin}^{\mathrm{2}} {x}+\mathrm{3} \\ $$$$\mathrm{4sin}^{\mathrm{4}} {x}−\mathrm{7sin}^{\mathrm{2}} {x}+\mathrm{3} \\ $$$$\left[\frac{\pi}{\mathrm{4}};\frac{\mathrm{3}\pi}{\mathrm{4}}\right] \\ $$$$\mathrm{2}.\:\mathrm{picture} \\ $$$$\mathrm{4}{s}^{\mathrm{4}} −\mathrm{4}\sqrt{\mathrm{3}}{s}^{\mathrm{2}} +\mathrm{3} \\ $$$$\mathrm{4}{s}^{\mathrm{4}} −\mathrm{7}{s}^{\mathrm{2}} +\mathrm{3} \\ $$$$\left[\frac{\sqrt{\mathrm{2}}}{\mathrm{2}};\:\mathrm{1}.\mathrm{11}^{\left(\ast\right)} \right] \\ $$$$\mathrm{3}.\:\mathrm{picture} \\ $$$$\mathrm{4}{t}^{\mathrm{2}} −\mathrm{4}\sqrt{\mathrm{3}}{t}+\mathrm{3} \\ $$$$\mathrm{4}{t}^{\mathrm{2}} −\mathrm{7}{t}+\mathrm{3} \\ $$$$\left[\frac{\sqrt{\mathrm{2}}}{\mathrm{2}};\:\mathrm{1}.\mathrm{02}^{\left(\ast\right)} \right] \\ $$$$ \\ $$$$\left(\ast\right)\:\mathrm{upper}\:\mathrm{borders}\:\mathrm{chosen}\:\mathrm{for} \\ $$$$\mathrm{symmetry}\:\mathrm{of}\:\mathrm{pics} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com