All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 32629 by rahul 19 last updated on 29/Mar/18
Ifx2+y2=9,4a2+9b2=16,thenmaximumvalueof4a2x2+9b2y2−12abxyis?
Answered by MJS last updated on 31/Mar/18
x2+y2=9⇒∣x∣⩽3∧∣y∣⩽34a2+9b2=16⇒∣a∣⩽2∧∣b∣⩽434a2x2+9b2y2−12abxy=(2ax−3by)2y=±9−x2b=±234−a2(2ax±24−a29−x2)2==4(ax±4−a29−x2)2f(x)=ax+4−a29−x2f′(x)=a−x4−a29−x2f′(x)=0⇒x=±32a4(ax±4−a29−x2)2==4(±32a2±32(4−a2))2==4(±6)2∨4(±(6−3a2))2==144∨36(2−a2)2g(a)=36(2−a2)2g′(a)=144a(2−a2)g′(a)=0⇒a=0∨a=±2g(±2)=0g(0)=144Answer=144a=0b=±43x=0y=±3
Commented by rahul 19 last updated on 31/Mar/18
thankusir!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com