Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 32666 by naka3546 last updated on 30/Mar/18

Commented by abdo imad last updated on 30/Mar/18

let put A_n = (((n+6)^((n+6)/n)  −n^((n+6)/n) )/((n+3)^((n+3)/n)  − n^((n+3)/n) ))  A_n =((n^((n+6)/n)  (  (1 +(6/n))^((n+6)/n)   −1))/(n^((n+3)/n) ( (1+(3/n))^((n+3)/n)  −1))) =n^(3/n)  (((1 +(6/n))^((n+6)/n)  −1)/((1+(3/n))^((n+3)/n)  −1))  but  (1+(6/n))^((n+6)/n)   ∼ 1+ ((6(n+6))/n^2 ) ⇒(1+(6/n))^((n+6)/n)  −1 ∼ ((6(n+6))/n^2 )  (1+(3/n))^((n+3)/n)  ∼  1+ ((3(n+3))/n^2 ) ⇒ (1+(3/n))^((n+3)/n)  −1 ∼  ((3(n+3))/n^2 )  ⇒ A_n ∼  n^(3/n)     ((6n+36)/(3n +9)) ⇒ A_n  ∼2 e_(n→∞) ^((3/n)ln(n))   → 2 so  lim_(n→∞)  A_n =2 .

$${let}\:{put}\:{A}_{{n}} =\:\frac{\left({n}+\mathrm{6}\right)^{\frac{{n}+\mathrm{6}}{{n}}} \:−{n}^{\frac{{n}+\mathrm{6}}{{n}}} }{\left({n}+\mathrm{3}\right)^{\frac{{n}+\mathrm{3}}{{n}}} \:−\:{n}^{\frac{{n}+\mathrm{3}}{{n}}} } \\ $$$${A}_{{n}} =\frac{{n}^{\frac{{n}+\mathrm{6}}{{n}}} \:\left(\:\:\left(\mathrm{1}\:+\frac{\mathrm{6}}{{n}}\right)^{\frac{{n}+\mathrm{6}}{{n}}} \:\:−\mathrm{1}\right)}{{n}^{\frac{{n}+\mathrm{3}}{{n}}} \left(\:\left(\mathrm{1}+\frac{\mathrm{3}}{{n}}\right)^{\frac{{n}+\mathrm{3}}{{n}}} \:−\mathrm{1}\right)}\:={n}^{\frac{\mathrm{3}}{{n}}} \:\frac{\left(\mathrm{1}\:+\frac{\mathrm{6}}{{n}}\right)^{\frac{{n}+\mathrm{6}}{{n}}} \:−\mathrm{1}}{\left(\mathrm{1}+\frac{\mathrm{3}}{{n}}\right)^{\frac{{n}+\mathrm{3}}{{n}}} \:−\mathrm{1}}\:\:{but} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{6}}{{n}}\right)^{\frac{{n}+\mathrm{6}}{{n}}} \:\:\sim\:\mathrm{1}+\:\frac{\mathrm{6}\left({n}+\mathrm{6}\right)}{{n}^{\mathrm{2}} }\:\Rightarrow\left(\mathrm{1}+\frac{\mathrm{6}}{{n}}\right)^{\frac{{n}+\mathrm{6}}{{n}}} \:−\mathrm{1}\:\sim\:\frac{\mathrm{6}\left({n}+\mathrm{6}\right)}{{n}^{\mathrm{2}} } \\ $$$$\left(\mathrm{1}+\frac{\mathrm{3}}{{n}}\right)^{\frac{{n}+\mathrm{3}}{{n}}} \:\sim\:\:\mathrm{1}+\:\frac{\mathrm{3}\left({n}+\mathrm{3}\right)}{{n}^{\mathrm{2}} }\:\Rightarrow\:\left(\mathrm{1}+\frac{\mathrm{3}}{{n}}\right)^{\frac{{n}+\mathrm{3}}{{n}}} \:−\mathrm{1}\:\sim\:\:\frac{\mathrm{3}\left({n}+\mathrm{3}\right)}{{n}^{\mathrm{2}} } \\ $$$$\Rightarrow\:{A}_{{n}} \sim\:\:{n}^{\frac{\mathrm{3}}{{n}}} \:\:\:\:\frac{\mathrm{6}{n}+\mathrm{36}}{\mathrm{3}{n}\:+\mathrm{9}}\:\Rightarrow\:{A}_{{n}} \:\sim\mathrm{2}\:{e}_{{n}\rightarrow\infty} ^{\frac{\mathrm{3}}{{n}}{ln}\left({n}\right)} \:\:\rightarrow\:\mathrm{2}\:{so} \\ $$$${lim}_{{n}\rightarrow\infty} \:{A}_{{n}} =\mathrm{2}\:. \\ $$$$ \\ $$$$ \\ $$

Commented by MJS last updated on 31/Mar/18

(n+a)^((n+a)/n) −n^((n+a)/n) =  =(n+a)^(1+(a/n)) −n^(1+(a/n)) =  =(n+a)(n+a)^(a/n) −n×n^(a/n)   I′m very bad in these things, but  it seems obvious that (n+a)^(a/n)  and  n^(a/n)  both have the limit 1 (I′m  sorry I cannot show this) and we  would get (n+a)−n=a ⇒ (6/3)=2  Please be so kind and critizise  this “method”

$$\left({n}+{a}\right)^{\frac{{n}+{a}}{{n}}} −{n}^{\frac{{n}+{a}}{{n}}} = \\ $$$$=\left({n}+{a}\right)^{\mathrm{1}+\frac{{a}}{{n}}} −{n}^{\mathrm{1}+\frac{{a}}{{n}}} = \\ $$$$=\left({n}+{a}\right)\left({n}+{a}\right)^{\frac{{a}}{{n}}} −{n}×{n}^{\frac{{a}}{{n}}} \\ $$$$\mathrm{I}'\mathrm{m}\:\mathrm{very}\:\mathrm{bad}\:\mathrm{in}\:\mathrm{these}\:\mathrm{things},\:\mathrm{but} \\ $$$$\mathrm{it}\:\mathrm{seems}\:\mathrm{obvious}\:\mathrm{that}\:\left({n}+{a}\right)^{\frac{{a}}{{n}}} \:\mathrm{and} \\ $$$${n}^{\frac{{a}}{{n}}} \:\mathrm{both}\:\mathrm{have}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{1}\:\left(\mathrm{I}'\mathrm{m}\right. \\ $$$$\left.\mathrm{sorry}\:\mathrm{I}\:\mathrm{cannot}\:\mathrm{show}\:\mathrm{this}\right)\:\mathrm{and}\:\mathrm{we} \\ $$$$\mathrm{would}\:\mathrm{get}\:\left({n}+{a}\right)−{n}={a}\:\Rightarrow\:\frac{\mathrm{6}}{\mathrm{3}}=\mathrm{2} \\ $$$$\mathrm{Please}\:\mathrm{be}\:\mathrm{so}\:\mathrm{kind}\:\mathrm{and}\:\mathrm{critizise} \\ $$$$\mathrm{this}\:``\mathrm{method}'' \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com