Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32675 by Cheyboy last updated on 31/Mar/18

Commented by caravan msup abdo. last updated on 31/Mar/18

we have 1+cos(4x)=2cos^2 (2x)⇒  I= ∫_0 ^(π/2)  (√(1+cos(4x))) dx  = (√2) ∫_0 ^(π/2)  ∣cos(2x)∣dx  =(√2) ∫_0 ^(π/4)  cos(2x)dx −(√2) ∫_(π/4) ^(π/2)  cos(2x)dx  =((√2)/2) [ sin(2x)]_0 ^(π/4)   −((√2)/2) [sin(2x)]_(π/4) ^(π/2)   =((√2)/2) −((√2)/2)(−1) =(√2)  .

$${we}\:{have}\:\mathrm{1}+{cos}\left(\mathrm{4}{x}\right)=\mathrm{2}{cos}^{\mathrm{2}} \left(\mathrm{2}{x}\right)\Rightarrow \\ $$$${I}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\sqrt{\mathrm{1}+{cos}\left(\mathrm{4}{x}\right)}\:{dx} \\ $$$$=\:\sqrt{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mid{cos}\left(\mathrm{2}{x}\right)\mid{dx} \\ $$$$=\sqrt{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{cos}\left(\mathrm{2}{x}\right){dx}\:−\sqrt{\mathrm{2}}\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left(\mathrm{2}{x}\right){dx} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\left[\:{sin}\left(\mathrm{2}{x}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\left[{sin}\left(\mathrm{2}{x}\right)\right]_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(−\mathrm{1}\right)\:=\sqrt{\mathrm{2}}\:\:. \\ $$

Answered by MJS last updated on 31/Mar/18

cos 2x=2cos^2  x−1  2cos^2  2x−1=8cos^4  x−8cos^2  x+1 ⇒  ⇒ 1+cos 4x=2(4cos^4  x−4cos^2  x+1)=  =2(2cos^2  x−1)^2 =2cos^2  2x  ∫_0 ^(π/2) (√2)∣cos 2x∣dx=2(√2)∫_0 ^(π/4) cos 2x dx=  =2(√2)((sin 2x)/2) ∣_0 ^(π/4) =(√2)sin 2x∣_0 ^(π/4) =(√2)

$$\mathrm{cos}\:\mathrm{2}{x}=\mathrm{2cos}^{\mathrm{2}} \:{x}−\mathrm{1} \\ $$$$\mathrm{2cos}^{\mathrm{2}} \:\mathrm{2}{x}−\mathrm{1}=\mathrm{8cos}^{\mathrm{4}} \:{x}−\mathrm{8cos}^{\mathrm{2}} \:{x}+\mathrm{1}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{1}+\mathrm{cos}\:\mathrm{4}{x}=\mathrm{2}\left(\mathrm{4cos}^{\mathrm{4}} \:{x}−\mathrm{4cos}^{\mathrm{2}} \:{x}+\mathrm{1}\right)= \\ $$$$=\mathrm{2}\left(\mathrm{2cos}^{\mathrm{2}} \:{x}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{2cos}^{\mathrm{2}} \:\mathrm{2}{x} \\ $$$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\sqrt{\mathrm{2}}\mid\mathrm{cos}\:\mathrm{2}{x}\mid{dx}=\mathrm{2}\sqrt{\mathrm{2}}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\mathrm{cos}\:\mathrm{2}{x}\:{dx}= \\ $$$$=\mathrm{2}\sqrt{\mathrm{2}}\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{2}}\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\mid}}=\sqrt{\mathrm{2}}\mathrm{sin}\:\mathrm{2}{x}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\mid}}=\sqrt{\mathrm{2}} \\ $$

Commented by Cheyboy last updated on 31/Mar/18

Thank you sir bt the upper  limit ir π/2

$${Thank}\:{you}\:{sir}\:{bt}\:{the}\:{upper} \\ $$$${limit}\:{ir}\:\pi/\mathrm{2} \\ $$

Commented by MJS last updated on 31/Mar/18

I changed the upper limit  because I used cos 2x instead  of ∣cos 2x∣. cos 2x is ≥0 in [0;(π/4)]  but ≤0 in [(π/4);(π/2)], so (√2)∫_0 ^(π/2) cos 2x dx=0  but ∫_0 ^(π/4) cos 2x dx=−∫_(π/4) ^(π/2) cos 2x dx so  (√2)∫_0 ^(π/2) ∣cos 2x∣dx=2(√2)∫_0 ^(π/4) cos 2x dx

$$\mathrm{I}\:\mathrm{changed}\:\mathrm{the}\:\mathrm{upper}\:\mathrm{limit} \\ $$$$\mathrm{because}\:\mathrm{I}\:\mathrm{used}\:\mathrm{cos}\:\mathrm{2}{x}\:\mathrm{instead} \\ $$$$\mathrm{of}\:\mid\mathrm{cos}\:\mathrm{2}{x}\mid.\:\mathrm{cos}\:\mathrm{2}{x}\:\mathrm{is}\:\geqslant\mathrm{0}\:\mathrm{in}\:\left[\mathrm{0};\frac{\pi}{\mathrm{4}}\right] \\ $$$$\mathrm{but}\:\leqslant\mathrm{0}\:\mathrm{in}\:\left[\frac{\pi}{\mathrm{4}};\frac{\pi}{\mathrm{2}}\right],\:\mathrm{so}\:\sqrt{\mathrm{2}}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mathrm{cos}\:\mathrm{2}{x}\:{dx}=\mathrm{0} \\ $$$$\mathrm{but}\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\mathrm{cos}\:\mathrm{2}{x}\:{dx}=−\underset{\frac{\pi}{\mathrm{4}}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mathrm{cos}\:\mathrm{2}{x}\:{dx}\:\mathrm{so} \\ $$$$\sqrt{\mathrm{2}}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mid\mathrm{cos}\:\mathrm{2}{x}\mid{dx}=\mathrm{2}\sqrt{\mathrm{2}}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\mathrm{cos}\:\mathrm{2}{x}\:{dx} \\ $$$$ \\ $$

Commented by Cheyboy last updated on 31/Mar/18

thank you sir thatz well understood

$$\boldsymbol{{thank}}\:\boldsymbol{{you}}\:\boldsymbol{{sir}}\:\boldsymbol{{thatz}}\:\boldsymbol{{well}}\:\boldsymbol{{understood}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com