Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32675 by Cheyboy last updated on 31/Mar/18

Commented by caravan msup abdo. last updated on 31/Mar/18

we have 1+cos(4x)=2cos^2 (2x)⇒  I= ∫_0 ^(π/2)  (√(1+cos(4x))) dx  = (√2) ∫_0 ^(π/2)  ∣cos(2x)∣dx  =(√2) ∫_0 ^(π/4)  cos(2x)dx −(√2) ∫_(π/4) ^(π/2)  cos(2x)dx  =((√2)/2) [ sin(2x)]_0 ^(π/4)   −((√2)/2) [sin(2x)]_(π/4) ^(π/2)   =((√2)/2) −((√2)/2)(−1) =(√2)  .

wehave1+cos(4x)=2cos2(2x)I=0π21+cos(4x)dx=20π2cos(2x)dx=20π4cos(2x)dx2π4π2cos(2x)dx=22[sin(2x)]0π422[sin(2x)]π4π2=2222(1)=2.

Answered by MJS last updated on 31/Mar/18

cos 2x=2cos^2  x−1  2cos^2  2x−1=8cos^4  x−8cos^2  x+1 ⇒  ⇒ 1+cos 4x=2(4cos^4  x−4cos^2  x+1)=  =2(2cos^2  x−1)^2 =2cos^2  2x  ∫_0 ^(π/2) (√2)∣cos 2x∣dx=2(√2)∫_0 ^(π/4) cos 2x dx=  =2(√2)((sin 2x)/2) ∣_0 ^(π/4) =(√2)sin 2x∣_0 ^(π/4) =(√2)

cos2x=2cos2x12cos22x1=8cos4x8cos2x+11+cos4x=2(4cos4x4cos2x+1)==2(2cos2x1)2=2cos22xπ202cos2xdx=22π40cos2xdx==22sin2x2π40=2sin2xπ40=2

Commented by Cheyboy last updated on 31/Mar/18

Thank you sir bt the upper  limit ir π/2

Thankyousirbttheupperlimitirπ/2

Commented by MJS last updated on 31/Mar/18

I changed the upper limit  because I used cos 2x instead  of ∣cos 2x∣. cos 2x is ≥0 in [0;(π/4)]  but ≤0 in [(π/4);(π/2)], so (√2)∫_0 ^(π/2) cos 2x dx=0  but ∫_0 ^(π/4) cos 2x dx=−∫_(π/4) ^(π/2) cos 2x dx so  (√2)∫_0 ^(π/2) ∣cos 2x∣dx=2(√2)∫_0 ^(π/4) cos 2x dx

IchangedtheupperlimitbecauseIusedcos2xinsteadofcos2x.cos2xis0in[0;π4]but0in[π4;π2],so2π20cos2xdx=0butπ40cos2xdx=π2π4cos2xdxso2π20cos2xdx=22π40cos2xdx

Commented by Cheyboy last updated on 31/Mar/18

thank you sir thatz well understood

thankyousirthatzwellunderstood

Terms of Service

Privacy Policy

Contact: info@tinkutara.com