Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 32701 by caravan msup abdo. last updated on 31/Mar/18

let give f(x)= (x/(√(x+1)))  1)calculate f^(−1) (x))  2) calculate (f^(−1) )^′ (x) .

$${let}\:{give}\:{f}\left({x}\right)=\:\frac{{x}}{\sqrt{{x}+\mathrm{1}}} \\ $$$$\left.\mathrm{1}\left.\right){calculate}\:{f}^{−\mathrm{1}} \left({x}\right)\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\left({f}^{−\mathrm{1}} \right)^{'} \left({x}\right)\:. \\ $$

Commented by Rio Mike last updated on 31/Mar/18

solution  let f(x)=y  y=(x/(√(x+1)))  ((y(√(x+1)))/y)=(x/y)  x+1=((x/y))^2   x=(x^2 /y^2 )−1  replacing y by x.  f^(−1) (x)=((x^2_  /x^2 ))−1

$$\mathrm{solution} \\ $$$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{y} \\ $$$$\mathrm{y}=\frac{\mathrm{x}}{\sqrt{\mathrm{x}+\mathrm{1}}} \\ $$$$\frac{\mathrm{y}\sqrt{\mathrm{x}+\mathrm{1}}}{\mathrm{y}}=\frac{\mathrm{x}}{\mathrm{y}} \\ $$$$\mathrm{x}+\mathrm{1}=\left(\frac{\mathrm{x}}{\mathrm{y}}\right)^{\mathrm{2}} \\ $$$$\mathrm{x}=\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{y}^{\mathrm{2}} }−\mathrm{1} \\ $$$$\mathrm{replacing}\:\mathrm{y}\:\mathrm{by}\:\mathrm{x}. \\ $$$$\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)=\left(\frac{\mathrm{x}^{\mathrm{2}_{} } }{\mathrm{x}^{\mathrm{2}} }\right)−\mathrm{1} \\ $$

Commented by MJS last updated on 31/Mar/18

you must exchange x and y  each x must be replaced by y  and each y must be replaced by x

$$\mathrm{you}\:\mathrm{must}\:\mathrm{exchange}\:{x}\:\mathrm{and}\:{y} \\ $$$$\boldsymbol{\mathrm{each}}\:{x}\:\mathrm{must}\:\mathrm{be}\:\mathrm{replaced}\:\mathrm{by}\:{y} \\ $$$$\mathrm{and}\:\boldsymbol{\mathrm{each}}\:{y}\:\mathrm{must}\:\mathrm{be}\:\mathrm{replaced}\:\mathrm{by}\:{x} \\ $$

Commented by abdo imad last updated on 01/Apr/18

let put f(x)=y  ⇔x=f^(−1) (y) ⇒(x/(√(x+1)))  =y  ⇒x=y(√(x+1))  with conditiona x>−1 and (x/y)>0  ⇒x^2  =y^2 (x+1)=y^2 x +y^2  ⇒  x^2  −y^2 x −y^2 =0  equ.wth unknown x  Δ = y^4   +4y^2  ≥0  ⇒ x_1  =((y^2  +(√(y^4  +4y^2 )))/2)  x_2 = ((y^2  −(√(y^4  +4y^2 )))/2) but we must have x+1>0 let try  with x_2   because its clear that x_1  +1>0  x_2  +1 = ((y^2  −(√(y^4  +4y^2 )))/2) +1  =((y^2  +2 −(√(y^4  +4y^2 )))/2)  (y^2  +2)^(2 )  −(y^4  +4y^2 ) = 4 condition realized   (x_2 /y) = ((y^2  −∣y∣(√(y^2 +4)))/(2y)) =y + ξ((√(4+y^2 ))/2) with ξ^2  =1 but the sine  of  (x_2 /y) is not constant  so the so<ution of the equ.is x_1   and f^(−1) (x) = (1/2)(x^2  +(√(x^4  +4x^2 )) )  2)(f^(−1) )^′ (x)= (1/2)(2x + ((4x^3  +8x)/(2(√(x^4  +4x^2 )))))  = x  + ((2x^3  +4x)/(√(x^4  +4x^2 ))) .

$${let}\:{put}\:{f}\left({x}\right)={y}\:\:\Leftrightarrow{x}={f}^{−\mathrm{1}} \left({y}\right)\:\Rightarrow\frac{{x}}{\sqrt{{x}+\mathrm{1}}}\:\:={y}\:\:\Rightarrow{x}={y}\sqrt{{x}+\mathrm{1}} \\ $$$${with}\:{conditiona}\:{x}>−\mathrm{1}\:{and}\:\frac{{x}}{{y}}>\mathrm{0}\:\:\Rightarrow{x}^{\mathrm{2}} \:={y}^{\mathrm{2}} \left({x}+\mathrm{1}\right)={y}^{\mathrm{2}} {x}\:+{y}^{\mathrm{2}} \:\Rightarrow \\ $$$${x}^{\mathrm{2}} \:−{y}^{\mathrm{2}} {x}\:−{y}^{\mathrm{2}} =\mathrm{0}\:\:{equ}.{wth}\:{unknown}\:{x} \\ $$$$\Delta\:=\:{y}^{\mathrm{4}} \:\:+\mathrm{4}{y}^{\mathrm{2}} \:\geqslant\mathrm{0}\:\:\Rightarrow\:{x}_{\mathrm{1}} \:=\frac{{y}^{\mathrm{2}} \:+\sqrt{{y}^{\mathrm{4}} \:+\mathrm{4}{y}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$${x}_{\mathrm{2}} =\:\frac{{y}^{\mathrm{2}} \:−\sqrt{{y}^{\mathrm{4}} \:+\mathrm{4}{y}^{\mathrm{2}} }}{\mathrm{2}}\:{but}\:{we}\:{must}\:{have}\:{x}+\mathrm{1}>\mathrm{0}\:{let}\:{try} \\ $$$${with}\:{x}_{\mathrm{2}} \:\:{because}\:{its}\:{clear}\:{that}\:{x}_{\mathrm{1}} \:+\mathrm{1}>\mathrm{0} \\ $$$${x}_{\mathrm{2}} \:+\mathrm{1}\:=\:\frac{{y}^{\mathrm{2}} \:−\sqrt{{y}^{\mathrm{4}} \:+\mathrm{4}{y}^{\mathrm{2}} }}{\mathrm{2}}\:+\mathrm{1}\:\:=\frac{{y}^{\mathrm{2}} \:+\mathrm{2}\:−\sqrt{{y}^{\mathrm{4}} \:+\mathrm{4}{y}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$$\left({y}^{\mathrm{2}} \:+\mathrm{2}\right)^{\mathrm{2}\:} \:−\left({y}^{\mathrm{4}} \:+\mathrm{4}{y}^{\mathrm{2}} \right)\:=\:\mathrm{4}\:{condition}\:{realized}\: \\ $$$$\frac{{x}_{\mathrm{2}} }{{y}}\:=\:\frac{{y}^{\mathrm{2}} \:−\mid{y}\mid\sqrt{{y}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}{y}}\:={y}\:+\:\xi\frac{\sqrt{\mathrm{4}+{y}^{\mathrm{2}} }}{\mathrm{2}}\:{with}\:\xi^{\mathrm{2}} \:=\mathrm{1}\:{but}\:{the}\:{sine} \\ $$$${of}\:\:\frac{{x}_{\mathrm{2}} }{{y}}\:{is}\:{not}\:{constant}\:\:{so}\:{the}\:{so}<{ution}\:{of}\:{the}\:{equ}.{is}\:{x}_{\mathrm{1}} \\ $$$${and}\:{f}^{−\mathrm{1}} \left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left({x}^{\mathrm{2}} \:+\sqrt{{x}^{\mathrm{4}} \:+\mathrm{4}{x}^{\mathrm{2}} }\:\right) \\ $$$$\left.\mathrm{2}\right)\left({f}^{−\mathrm{1}} \right)^{'} \left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{x}\:+\:\frac{\mathrm{4}{x}^{\mathrm{3}} \:+\mathrm{8}{x}}{\mathrm{2}\sqrt{{x}^{\mathrm{4}} \:+\mathrm{4}{x}^{\mathrm{2}} }}\right) \\ $$$$=\:{x}\:\:+\:\frac{\mathrm{2}{x}^{\mathrm{3}} \:+\mathrm{4}{x}}{\sqrt{{x}^{\mathrm{4}} \:+\mathrm{4}{x}^{\mathrm{2}} }}\:. \\ $$

Answered by MJS last updated on 31/Mar/18

x=(y/(√(y+1)))  x(√(y+1))=y  x^2 y+x^2 =y^2   y^2 −x^2 y−x^2 =0  y=(x^2 /2)±(√((x^4 /4)+x^2 ))  y=(x^2 /2)±(√((x^2 /4)(x^2 +4)))  y=f^(−1) (x)=(x^2 /2)±(x/2)(√(x^2 +4))    y′=((2x)/2)±((1/2)×(x^2 +4)^(1/2) +(x/2)×(1/2)×(x^2 +4)^(−(1/2)) ×2x)  y′=x±((1/2)(x^2 +4)^(1/2) +(x^2 /2)(x^2 +4)^(−(1/2)) )  y′=x±(1/2)(x^2 +4)^(−(1/2)) ((x^2 +4)^1 +x^2 )  y′=(f^(−1) )′(x)=x±((x^2 +2)/(√(x^2 +4)))

$${x}=\frac{{y}}{\sqrt{{y}+\mathrm{1}}} \\ $$$${x}\sqrt{{y}+\mathrm{1}}={y} \\ $$$${x}^{\mathrm{2}} {y}+{x}^{\mathrm{2}} ={y}^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} −{x}^{\mathrm{2}} {y}−{x}^{\mathrm{2}} =\mathrm{0} \\ $$$${y}=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\pm\sqrt{\frac{{x}^{\mathrm{4}} }{\mathrm{4}}+{x}^{\mathrm{2}} } \\ $$$${y}=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\pm\sqrt{\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\left({x}^{\mathrm{2}} +\mathrm{4}\right)} \\ $$$${y}={f}^{−\mathrm{1}} \left({x}\right)=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\pm\frac{{x}}{\mathrm{2}}\sqrt{{x}^{\mathrm{2}} +\mathrm{4}} \\ $$$$ \\ $$$${y}'=\frac{\mathrm{2}{x}}{\mathrm{2}}\pm\left(\frac{\mathrm{1}}{\mathrm{2}}×\left({x}^{\mathrm{2}} +\mathrm{4}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} +\frac{{x}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{2}}×\left({x}^{\mathrm{2}} +\mathrm{4}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} ×\mathrm{2}{x}\right) \\ $$$${y}'={x}\pm\left(\frac{\mathrm{1}}{\mathrm{2}}\left({x}^{\mathrm{2}} +\mathrm{4}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} +\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\left({x}^{\mathrm{2}} +\mathrm{4}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \right) \\ $$$${y}'={x}\pm\frac{\mathrm{1}}{\mathrm{2}}\left({x}^{\mathrm{2}} +\mathrm{4}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \left(\left({x}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{1}} +{x}^{\mathrm{2}} \right) \\ $$$${y}'=\left({f}^{−\mathrm{1}} \right)'\left({x}\right)={x}\pm\frac{{x}^{\mathrm{2}} +\mathrm{2}}{\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com